Câu hỏi:

01/10/2024 3,215

Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\)\(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường \(BC = 8\) km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Khoảng thời gian ngắn nhất để người đàn ông đến \(B\) là bao nhiêu giờ (làm tròn kết quả đến hàng phần mười)?

Một người đàn ông muốn chèo thuyền ở vị trí  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một người đàn ông muốn chèo thuyền ở vị trí  (ảnh 2)

Đặt \(CD = x\) (km, \(x \ge 0\)). Quãng đường chạy bộ \(DB = 8 - x\) (km) và quãng đường chèo thuyền \[AD = \sqrt {9 + {x^2}} \] (km).

Rõ ràng \(x\) phải thỏa mãn điều kiện \(0 \le x \le 8\).

Khi đó, thời gian chèo thuyền là \(\frac{{\sqrt {9 + {x^2}} }}{6}\) (giờ) và thời gian chạy bộ là \(\frac{{8 - x}}{8}\) (giờ).

Tổng thời gian mà người đàn ông cần có là:

\(T\left( x \right) = \frac{{\sqrt {9 + {x^2}} }}{6} + \frac{{8 - x}}{8}\), \(x \in \left[ {0;\,8} \right]\).

Ta có: \(T'\left( x \right) = \frac{x}{{6\sqrt {{x^2} + 9} }} - \frac{1}{8}\). Trên khoảng \(\left( {0;8} \right)\), \(T'\left( x \right) = 0 \Leftrightarrow x = \frac{9}{{\sqrt 7 }}\).

\(T\left( 0 \right) = \frac{3}{2};\,T\left( {\frac{9}{{\sqrt 7 }}} \right) = 1 + \frac{{\sqrt 7 }}{8};\,\,T\left( 8 \right) = \frac{{\sqrt {73} }}{6}\).

Do đó, \(\mathop {\min }\limits_{\left[ {0;8} \right]} T\left( x \right) = T\left( {\frac{9}{{\sqrt 7 }}} \right) = 1 + \frac{{\sqrt 7 }}{8}\).

Vậy thời gian ngắn nhất mà người đàn ông cần dùng là \(1 + \frac{{\sqrt 7 }}{8} \approx 1,3\) (giờ) và đi bằng cách chèo thuyền đến điểm \(D\) cách \(C\) một khoảng \(\frac{9}{{\sqrt 7 }}\)km rồi từ đó chạy bộ đến điểm \(B\).

Đáp số: \(1,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({A_1},\,{B_1},\,{C_1}\) lần lượt là các điểm sao cho \(\overrightarrow {O{A_1}} = \overrightarrow {{F_1}} ,\,\,\overrightarrow {O{B_1}} = \overrightarrow {{F_2}} ,\,\overrightarrow {O{C_1}} = \overrightarrow {{F_3}} \). Lấy các điểm \({D_1},{A'_1},\,{B'_1},\,{D'_1}\) sao cho \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình hộp như hình dưới đây.

Một chiếc đèn tròn được treo song song (ảnh 2)

Theo quy tắc hình hộp, ta có: \(\overrightarrow {O{A_1}} + \overrightarrow {O{B_1}} + \overrightarrow {O{C_1}} = \overrightarrow {O{{D'}_1}} \).

Mặt khác, do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) đôi một vuông góc và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15\) (N) nên hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) có ba cạnh \(O{A_1},\,O{B_1},\,O{C_1}\) đôi một vuông góc và bằng nhau.

Do đó, hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình lập phương có độ dài cạnh bằng 15.

Suy ra độ dài đường chéo của hình lập phương đó bằng \(15\sqrt 3 \).

Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \), ở đó \(\overrightarrow P \) là trọng lực tác dụng lên chiếc đèn.

Vậy trọng lượng của chiếc đèn là \(\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \approx 26\) (N).

Đáp số: \(26\).

Lời giải

a) Đ,           b) S,            c) S,            d) Đ.

Hướng dẫn giải

– Ta có: \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {B'B} + \overrightarrow {BD} = \overrightarrow {B'D} \). Do đó, ý a) đúng.

– Theo quy tắc hình hộp, ta có: \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD'} \ne \overrightarrow {BD} \). Vậy ý b) sai.

– Ta có: \(\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} = \overrightarrow {AC} + \overrightarrow {C'A} = \overrightarrow {C'A} + \overrightarrow {AC} = \overrightarrow {C'C} \).

Do đó, \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = \left| {\overrightarrow {CC'} } \right| = CC' = a\). Vậy ý c) sai.

Cho hình lập phương ABCD.A'B'C'D' có cạnh (ảnh 1)

\(AC'\) là đường chéo của hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\) nên \(AC' = a\sqrt 3 \).

Ta có: \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BN} - \overrightarrow {AM} \)\( = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BB'} - \frac{1}{2}\overrightarrow {AD} \).

Suy ra \({\overrightarrow {MN} ^2} = {\left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BB'} - \frac{1}{2}\overrightarrow {AD} } \right)^2}\)

                   \( = {\overrightarrow {AB} ^2} + \frac{1}{4}{\overrightarrow {BB'} ^2} + \frac{1}{4}{\overrightarrow {AD} ^2} + \overrightarrow {AB} \cdot \overrightarrow {BB'} - \overrightarrow {AB} \cdot \overrightarrow {AD} - \frac{1}{2}\overrightarrow {BB'} \cdot \overrightarrow {AD} \)

                   \( = {a^2} + \frac{1}{4}{a^2} + \frac{1}{4}{a^2} + 0 - 0 - \frac{1}{2} \cdot 0 = \frac{3}{2}{a^2}\).

Do đó, \({\left| {\overrightarrow {MN} } \right|^2} = {\overrightarrow {MN} ^2} = \frac{3}{2}{a^2}\), suy ra \(\left| {\overrightarrow {MN} } \right| = \frac{{a\sqrt 3 }}{{\sqrt 2 }}\).

Theo quy tắc hình hộp, ta có: \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \).

Khi đó, \(\overrightarrow {AC'} \cdot \overrightarrow {MN} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right) \cdot \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BB'} - \frac{1}{2}\overrightarrow {AD} } \right)\)

\( = {\overrightarrow {AB} ^2} + \frac{1}{2}\overrightarrow {AB} \cdot \overrightarrow {BB'} - \frac{1}{2}\overrightarrow {AB} \cdot \overrightarrow {AD} + \overrightarrow {AD} \cdot \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \cdot \overrightarrow {BB'} - \frac{1}{2}{\overrightarrow {AD} ^2}\)\( + \overrightarrow {AA'} \cdot \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AA'} \cdot \overrightarrow {BB'} - \frac{1}{2}\overrightarrow {AA'} \cdot \overrightarrow {AD} \)

\( = {\overrightarrow {AB} ^2} - \frac{1}{2}{\overrightarrow {AD} ^2} + \frac{1}{2}\overrightarrow {AA'} \cdot \overrightarrow {BB'} \)

\( = {a^2} - \frac{1}{2}{a^2} + \frac{1}{2}{a^2} = {a^2}\).

Vậy \(\cos \left( {\overrightarrow {MN} ,\,\,\overrightarrow {AC'} } \right) = \frac{{\overrightarrow {MN} \cdot \overrightarrow {AC'} }}{{\left| {\overrightarrow {MN} } \right| \cdot \left| {\overrightarrow {AC'} } \right|}} = \frac{{{a^2}}}{{\frac{{a\sqrt 3 }}{{\sqrt 2 }} \cdot a\sqrt 3 }} = \frac{{\sqrt 2 }}{3}\). Do đó, ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số liên tục trên R và có đồ thị như sau:

Phát biểu nào dưới đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay