Câu hỏi:

01/10/2024 5,311

Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \(ABCD\), mặt phẳng \(\left( {ABCD} \right)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,\,EB,\,EC,\,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

Một chiếc ô tô được đặt trên mặt đáy dưới của  (ảnh 1)

Trọng lượng của chiếc xe ô bằng bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)? Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N và trọng lượng của khung sắt là \(2\,700\) N.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một chiếc ô tô được đặt trên mặt đáy dưới của  (ảnh 2)

Gọi \[{A_1},\,{B_1},\,{C_1},\,{D_1}\] lần lượt là các điểm sao cho \(\overrightarrow {E{A_1}} = \overrightarrow {{F_1}} ,\,\,\overrightarrow {E{B_1}} = \overrightarrow {{F_2}} ,\,\,\overrightarrow {E{C_1}} = \overrightarrow {{F_3}} ,\,\overrightarrow {E{D_1}} = \overrightarrow {{F_4}} \).

Do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N nên

\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {{F_4}} } \right| = 4\,500\) (N).

Gọi \(O\) là tâm của hình chữ nhật \({A_1}{B_1}{C_1}{D_1}\). Khi đó, \(O\) là trung điểm của \({A_1}{C_1}\)\({B_1}{D_1}\).

Sử dụng quy tắc trung điểm ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = 2\overrightarrow {EO} \)\(\overrightarrow {{F_2}} + \overrightarrow {{F_4}} = 2\overrightarrow {EO} \).

Suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} + \overrightarrow {{F_4}} = 4\overrightarrow {EO} \).

Mặt khác, do các cạnh \(EA,\,EB,\,EC,\,ED\) tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \) nên \(\widehat {E{A_1}O} = \widehat {E{B_1}O} = \widehat {E{C_1}O} = \widehat {E{D_1}O} = 60^\circ \), do đó tam giác \(E{A_1}{C_1}\) là tam giác đều cạnh \(4\,500\) (N) với đường cao \(EO = 2\,250\sqrt 3 \) (N).

Do khung sắt ở vị trí cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} + \overrightarrow {{F_4}} = \overrightarrow P \) với \(\overrightarrow P \) là trọng lực tác dụng lên chiếc xe ô tô và khung sắt. Ta tính được tổng trọng lực có độ lớn là \(4\left| {\overrightarrow {EO} } \right| = 9\,000\sqrt 3 \) (N).

Vậy trọng lượng của ô tô bằng \(9\,000\sqrt 3 - 2\,700 \approx 12\;888\) (N).

Đáp số: \(12\,888\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một tấm bìa mỏng hình vuông cạnh 6 dm, bạn Nhi cắt bỏ bốn tam giác cân bằng nhau có cạnh đáy là cạnh của hình vuông ban đầu và đỉnh là đỉnh của một hình vuông nhỏ phía trong rồi gập lên, ghép lại tạo thành một khối chóp tứ giác đều như hình sau.

Từ một tấm bìa mỏng hình vuông cạnh 6 dm (ảnh 1)

Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 01/10/2024 32,580

Câu 2:

Cho hàm số \(y = {e^x}\left( {{x^2} - 3} \right)\), gọi \(M = \frac{a}{{{e^b}}}\,\,\left( {a,\,b \in \mathbb{N}} \right)\) là giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ { - 5;\, - 2} \right]\). Giá trị của biểu thức \(P = a + b\) bằng bao nhiêu?

Xem đáp án » 01/10/2024 9,241

Câu 3:

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (với \(a,\,m \ne 0\)) có đồ thị là đường cong như hình dưới đây.

Tiệm cận xiên của đồ thị hàm số là đường thẳng  (ảnh 1)

Tiệm cận xiên của đồ thị hàm số là đường thẳng

Xem đáp án » 01/10/2024 5,957

Câu 4:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB = a\)\(AA' = a\sqrt 2 \). Số đo góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {BC'} \) bằng bao nhiêu độ?

Xem đáp án » 01/10/2024 5,345

Câu 5:

Cho hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\).

a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\).

b) Hàm số đã cho không có cực trị.

c) \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 2\).

d) Biết rằng trên \(\left( C \right)\) có 2 điểm phân biệt mà các tiếp tuyến của \(\left( C \right)\) tại các điểm đó song song với đường thẳng \(y = x\). Gọi \(k\) là tổng hoành độ của hai điểm đó, khi đó \(k\) là một số chính phương.

Xem đáp án » 01/10/2024 1,727

Câu 6:

Một doanh nghiệp sản xuất một loại sản phẩm. Giả sử tổng chi phí (đơn vị: triệu đồng) để sản xuất và bán hết \(x\) sản phẩm đó được cho bởi:

\(f\left( x \right) = 0,0001{x^2} + 0,2x + 10\,\,000\,\,\,\,\left( {x \ge 1} \right)\).

Tỉ số \(M\left( x \right) = \frac{{f\left( x \right)}}{x}\,\,\left( {x \ge 1} \right)\) được gọi là chi phí trung bình cho một sản phẩm khi bán ra. Hãy cho biết doanh nghiệp cần sản xuất bao nhiêu sản phẩm để chi phí trung bình là nhỏ nhất.

Xem đáp án » 01/10/2024 1,634

Bình luận


Bình luận