Câu hỏi:
03/10/2024 6,272a) Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\[x{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + y{{\rm{H}}_2}{\rm{O}}.\]
Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.
b) Giải bài toán sau bằng cách lập hệ phương trình:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì số nguyên tử của \({\rm{Fe,}}\,\,{\rm{O}}\) và \({\rm{H}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\3x = 3 + y\\3x = 2y\end{array} \right.\)
Từ hai phương trình \(3x = 3 + y\) và \(3x = 2y\) ta có phương trình \(3 + y = 2y,\) suy ra \(y = 3.\)
Vậy \(x = 2\) và \(y = 3.\) Khi đó ta có phương trình phản ứng hóa học sau khi được cân bằng như sau:
\[2{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + 3{{\rm{H}}_2}{\rm{O}}.\]
b) Gọi \(x\) (km/h) là vận tốc dự định của ôtô và \(y\) (giờ) là thời gian dự định của ôtô để đi hết quãng đường AB \(\left( {x > 10,\,\,y > 0} \right).\)
– Quãng đường AB là \(xy\) (km).
– Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Khi đó, ta có:
⦁ Vận tốc của ôtô lúc này là: \(x + 10\) (km/h).
⦁ Thời gian ôtô đi hết quãng đường AB là: \(y - 3\) (giờ).
⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y - 3} \right)\) (giờ).
Ta có phương trình: \(\left( {x + 10} \right)\left( {y - 3} \right) = xy\)
\(xy - 3x + 10y - 30 = xy\)
\( - 3x + 10y = 30\) (1)
– Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi muộn hơn so với dự định là 5 giờ. Khi đó, ta có:
⦁ Vận tốc của ôtô lúc này là: \(x - 10\) (km/h).
⦁ Thời gian ôtô đi hết quãng đường AB là: \(y + 5\) (giờ).
⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y + 5} \right)\) (giờ).
Ta có phương trình: \[\left( {x - 10} \right)\left( {y + 5} \right) = xy\]
\(xy + 5x - 10y - 50 = xy\)
\(5x - 10y = 50\) (2)
Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l} - 3x + 10y = 30\\5x - 10y = 50\end{array} \right.\)
Cộng từng vế hai phương trình của hệ, ta được: \(2x = 80,\) suy ra \[x = 40\] (thỏa mãn).
Thay \[x = 40\] vào phương trình (1), ta được:
\( - 3 \cdot 40 + 10y = 30\) hay \(10y = 150,\) suy ra \(y = 15\) (thỏa mãn).
Vậy vận tốc dự định của ôtô là 40 (km/h) và thời gian ôtô đi hết quãng đường AB là 15 (giờ).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).
Câu 2:
Câu 3:
Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến phút).
Câu 4:
Cho góc \(\alpha \) thỏa mãn \[0^\circ < \alpha < 90^\circ .\] Chứng minh rằng:
\[\frac{{\sin \alpha + \cos \alpha - 1}}{{1 - \cos \alpha }} = \frac{{2\cos \alpha }}{{\sin \alpha - \cos \alpha + 1}}.\]
Câu 5:
Cho hai số \(a,\,\,b\) và \[a > 1 > b.\]
a) \(a - 1 > 0.\) b) \(a - b < 0.\)
c) \(\left( {a - 1} \right)\left( {b - 1} \right) < 0.\) d) \(a - 2b < - 1.\)
Câu 6:
về câu hỏi!