Câu hỏi:

03/10/2024 7,545

a) Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:

\[x{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + y{{\rm{H}}_2}{\rm{O}}.\]

Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.   

b) Giải bài toán sau bằng cách lập hệ phương trình:

Một ôtô dự định đi từ A đến B trong khoảng thời gian nhất định. Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi chậm mất so với dự định là 5 giờ. Tính vận tốc và thời gian dự định của ôtô.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì số nguyên tử của \({\rm{Fe,}}\,\,{\rm{O}}\) và \({\rm{H}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\3x = 3 + y\\3x = 2y\end{array} \right.\)

Từ hai phương trình \(3x = 3 + y\) và \(3x = 2y\) ta có phương trình \(3 + y = 2y,\) suy ra \(y = 3.\)

Vậy \(x = 2\) và \(y = 3.\) Khi đó ta có phương trình phản ứng hóa học sau khi được cân bằng như sau:

\[2{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + 3{{\rm{H}}_2}{\rm{O}}.\]

b) Gọi \(x\) (km/h) là vận tốc dự định của ôtô và \(y\) (giờ) là thời gian dự định của ôtô để đi hết quãng đường AB \(\left( {x > 10,\,\,y > 0} \right).\)

– Quãng đường AB là \(xy\) (km).

– Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Khi đó, ta có:

  ⦁ Vận tốc của ôtô lúc này là: \(x + 10\) (km/h).

  ⦁ Thời gian ôtô đi hết quãng đường AB là: \(y - 3\) (giờ).

  ⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y - 3} \right)\) (giờ).

Ta có phương trình: \(\left( {x + 10} \right)\left( {y - 3} \right) = xy\)

 \(xy - 3x + 10y - 30 = xy\)

 \( - 3x + 10y = 30\)  (1)

– Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi muộn hơn so với dự định là 5 giờ. Khi đó, ta có:

  ⦁ Vận tốc của ôtô lúc này là: \(x - 10\) (km/h).

  ⦁ Thời gian ôtô đi hết quãng đường AB là: \(y + 5\) (giờ).

  ⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y + 5} \right)\) (giờ).

Ta có phương trình: \[\left( {x - 10} \right)\left( {y + 5} \right) = xy\]

\(xy + 5x - 10y - 50 = xy\)

\(5x - 10y = 50\)  (2)

Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l} - 3x + 10y = 30\\5x - 10y = 50\end{array} \right.\)

Cộng từng vế hai phương trình của hệ, ta được: \(2x = 80,\) suy ra \[x = 40\] (thỏa mãn).

Thay \[x = 40\] vào phương trình (1), ta được:

\( - 3 \cdot 40 + 10y = 30\) hay \(10y = 150,\) suy ra \(y = 15\) (thỏa mãn).

Vậy vận tốc dự định của ôtô là 40 (km/h) và thời gian ôtô đi hết quãng đường AB là 15 (giờ).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cho tam giác \(ABC\) có \[AB = 4{\rm{\;cm}}\], \[BC = 4,5{\rm{\;cm}}\], \[\widehat {B\,} = 40^\circ \]. Gọi \(AH\) là đường cao kẻ từ đỉnh \(A\) của tam giác. Tính độ dài các đoạn thẳng \(AH,\,\,BH,\,\,AC\) và số đo góc \(C\) của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc). (ảnh 2)

a) Xét \[\Delta ABH\] vuông tại \[H,\] ta có:

\[AH = AB \cdot \sin B = 4 \cdot \sin 40^\circ  \approx 2,57\] (cm);

\(BH = AB \cdot \cos B = 4 \cdot \cos 40^\circ  \approx 3,06\) (cm).

Ta có \(BC = BH + HC\)

Suy ra \(HC = BC - BH \approx 4,5 - 3,06 = 1,44\) (cm).

Xét \[\Delta AHC\] vuông tại \[H\], theo định lí Pythagore, ta có:

\[A{C^2} = A{H^2} + H{C^2} \approx 2,{57^2} + 1,{44^2} = 8,6785\]

Suy ra \(AC \approx 2,95\) (cm).

Trong \[\Delta AHC\], ta cũng có: \(\tan C = \frac{{AH}}{{HC}} \approx \frac{{2,57}}{{1,44}} = \frac{{257}}{{144}}.\) Suy ra \(\widehat {C\,} \approx 60^\circ 44'.\)

b) Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).

Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]

Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).

Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ  = x \cdot {\rm{tan}}38^\circ \)

\(500 \cdot {\rm{tan}}34^\circ  + x \cdot {\rm{tan}}34^\circ  = x \cdot {\rm{tan}}38^\circ \)

\(\;x \cdot {\rm{tan}}38^\circ  - x \cdot {\rm{tan}}34^\circ  = 500 \cdot {\rm{tan}}34^\circ \)

\(\;x \cdot \left( {{\rm{tan}}38^\circ  - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)

\(\;x = \frac{{500 \cdot {\rm{tan}}34^\circ }}{{{\rm{tan}}38^\circ  - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)

Suy ra \(CD = x \cdot {\rm{tan}}38^\circ  \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ  \approx 2468\,\,({\rm{m}}).\)

Vậy ngọn núi cao khoảng \(2\,\,468\) mét.

Câu 2

Trong các phương trình sau phương trình nào không phải là phương trình bậc nhất hai ẩn?

Lời giải

Đáp án đúng là: D

Phương trình bậc nhất hai ẩn có dạng \(ax + by = c\) với \(a\)\(b\) không đồng thời bằng 0.

Phương trình \[0x - 0y = 6\] có hệ số \(a = b = 0\) nên không phải là phương trình bậc nhất hai ẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác \[MNP\] vuông tại \(M.\) Khi đó \(\cot N\) bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay