Một máy bay đang bay ở độ cao \[12\] km, khi hạ cánh xuống mặt đất, đường đi của máy bay tạo với mặt đất một góc nghiêng \[\alpha .\] Nếu đường bay của máy bay dài \[320\] km thì góc nghiêng \[\alpha \] gần nhất với
A. \[2^\circ 9'.\]
B. \[2^\circ 8'.\]
C. \[87^\circ 52'.\]
D. \[87^\circ 51'.\]
Quảng cáo
Trả lời:

Đáp án đúng là: A

Ta mô hình hóa bài toán như hình vẽ trên.
Theo bài, máy bay đang ở độ cao \[12\] km nên \[AH = 12\] (km); đường bay từ \[A\] đến \[B\] của máy bay dài \[320\] km nên \[AB = 320\] (km).
Vì tam giác \[AHB\] vuông tại \[H\] nên \[\sin \alpha = \sin \widehat {ABH} = \frac{{AH}}{{AB}} = \frac{{12}}{{320}} = \frac{3}{{80}}.\]
Sử dụng máy tính cầm tay, chuyển máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím
Ấn tiếp phím , ta thấy màn hình hiện lên kết quả: \[2^\circ 8'56.74''.\]
Khi làm tròn đến phút, ta được kết quả \[\alpha = 2^\circ 9'.\]
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[30^\circ.\]
B. \[45^\circ.\]
C. \[60^\circ.\]
D. \[75^\circ.\]
Lời giải
Đáp án đúng là: A

Gọi \[MNPQ\] là mảnh vườn hình chữ nhật và \[\alpha \] là góc giữa đường chéo \[NQ\] và chiều dài \[MN\] của mảnh vườn hình chữ nhật.
Vì tam giác \[MNQ\] vuông tại \[M\] nên \[\tan \alpha = \tan \widehat {MNQ} = \frac{{MQ}}{{MN}} = \frac{{10\sqrt 3 }}{{30}} = \frac{{\sqrt 3 }}{3}.\]
Sử dụng máy tính cầm tay, chuyển máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím
Màn hình hiện lên kết quả: \[30.\] Nghĩa là, \[\alpha = 30^\circ .\]
Do đó góc giữa đường chéo và chiều dài của mảnh vườn bằng \[30^\circ .\]
Vậy ta chọn phương án A.
Câu 2
A. Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \[\alpha ,\] kí hiệu \[\tan \alpha .\]
B. Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc \[\alpha ,\] kí hiệu \[\sin \alpha .\]
C. Tỉ số giữa cạnh huyền và cạnh kề được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cot \alpha .\]
D. Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cos \alpha .\]
Lời giải
Đáp án đúng là: C
Phương án A, B, D đúng.
Phương án C sai. Sửa lại: Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc \[\alpha ,\] kí hiệu \[\cot \alpha .\]
Vậy ta chọn phương án C.
Câu 3
A. \[75\] tầng.
B. \[80\] tầng.
C. \[70\] tầng.
D. \[60\] tầng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\tan B = \frac{{4\sqrt {41} }}{{41}}.\]
B. \[\tan B = \frac{4}{3}.\]
C. \[\tan B = \frac{3}{4}.\]
D. \[\tan B = \frac{4}{5}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[J = 1.\]
B. \[J = 2.\]
C. \[J = 0.\]
D. \[J = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.