Câu hỏi:

14/10/2024 185 Lưu

Đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số nào dưới đây?

A. \(y = \frac{{x + 2}}{{\left| x \right| - 1}}.\)

B. \(y = \frac{1}{{{x^3} + 1}}.\)

C. \(y = \frac{{ - {x^2} + x + 2}}{{x + 1}}.\)

D. \(y = \frac{2}{{{x^2} + 3x + 2}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Có \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{ - {x^2} + x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\left( {2 - x} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {2 - x} \right) = 3\); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = 3\).

Do đó đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số \(y = \frac{{ - {x^2} + x + 2}}{{x + 1}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy đường tiệm cận xiên đi qua gốc tọa đô và điểm (2; 2) nên đường tiệm cận xiên có phương trình là y = x.

Lời giải

Đáp án đúng là: B

Vì \(\mathop {\lim }\limits_{x \to - \infty } y = 3\) nên \(y = 3\) là đường tiệm cận ngang.

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \)nên \(x = 1\) là đường tiệm cận đứng.

Vậy hàm số đã cho có hai đường tiệm cận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = 0.\)

B. \(x = - 4.\)

C. \(x = 0\); \(x = 4.\)

D. \(x = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP