Câu hỏi:
14/10/2024 60Đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Có \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{ - {x^2} + x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\left( {2 - x} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {2 - x} \right) = 3\); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = 3\).
Do đó đường thẳng \(x = - 1\) không là tiệm cận của đồ thị hàm số \(y = \frac{{ - {x^2} + x + 2}}{{x + 1}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là
Câu 2:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng
Câu 3:
Cho đồ thị hàm số y = f(x) có bảng biến thiên xác định như hình. Biết rằng đồ thị hàm số có tiệm cận đứng x = x0, tiệm cận ngang y = y0 và x0y0 = 16. Tìm m.
Câu 4:
Cho hàm số y = f(x) có bảng biến thiên
Có bao nhiêu giá trị nguyên của m ∈ [−4; 4] để đồ thị hàm số có 4 tiệm cận.
Câu 5:
Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x + 1}}\) là
Câu 6:
I. Nhận biết
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có tiệm cận đứng bằng
Câu 7:
Đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 1 + \frac{3}{{x + 1}}\) là
về câu hỏi!