Câu hỏi:

16/10/2024 3,036 Lưu

Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng).

Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?

A. \(10.\)

B. \(11.\)

C. \(12.\)

D. \(13.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(\frac{{3n}}{4} = \frac{{3.20}}{4} = 15\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {9;11} \right)\).

Do đó, \({Q_3} = 9 + \frac{{15 - \left( {2 + 7} \right)}}{7}\left( {11 - 9} \right) = \frac{{75}}{7} \approx 10,71.\)

Vậy tứ phân vị thứ ba gần nhất với giá trị 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cỡ mẫu là \(n = 100.\)

Ta có: \(\frac{n}{4} = \frac{{100}}{4} = 25\) nên \({Q_1} \in \left[ {18;21} \right)\) do đó \({Q_1} = 18 + \frac{{25 - 22}}{{38}}\left( {21 - 18} \right) = \frac{{693}}{{38}}.\)

\(\frac{{3n}}{4} = \frac{{3.100}}{4} = 75\) nên \({Q_3} \in \left[ {21;24} \right)\) do đó \({Q_3} = 21 + \frac{{75 - \left( {22 + 38} \right)}}{{27}}\left( {24 - 21} \right) = \frac{{68}}{3}.\)

Khoảng tứ phân vị của mẫu số liệu là \(\Delta Q = {Q_3} - {Q_1} = \frac{{505}}{{114}} \approx 4,43.\)

Ta có: \({Q_3} + 1,5\Delta Q = \frac{{6683}}{{228}} < 30\) nên thời gian của ông Thắng đi hết hơn 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

Vậy có 2 ý đúng là a và d.

Câu 2

A. \(\left[ {14;15} \right).\)

B. \(\left[ {15;16} \right).\)

C. \(\left[ {16;17} \right).\)

D. \(\left[ {17;18} \right).\)

Lời giải

Đáp án đúng là: C

Ta có: \(\frac{n}{4} = \frac{{20}}{4} = 5\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {16;17} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP