Câu hỏi:

16/10/2024 1,481

Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao \[GH = 4\] m, chiều rộng \[AB = 4\] m, \[AC = BD = 0,9\] m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật \[CDEF\] tô đậm có giá là \[1200000\] đồng/m2, còn các phần để trắng để trang trí hoa có giá là \[900000\] đồng/m2. Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?

Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao  G H = 4  m, chiều rộng  A B = 4  m,  A C = B D = 0 , 9  m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật  C D E F  tô đậm có giá là  1200000  đồng/m2, (ảnh 1)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gắn hệ trục tọa độ sao cho \[AB\] trùng \[Ox\], \[A\] trùng \[O\] khi đó parabol có đỉnh \[G\left( {2;4} \right)\] và đi qua gốc tọa độ.

Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao  G H = 4  m, chiều rộng  A B = 4  m,  A C = B D = 0 , 9  m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật  C D E F  tô đậm có giá là  1200000  đồng/m2, (ảnh 2)

Giả sử phương trình của parabol có dạng \[y = a{x^2} + bx + c{\rm{ }}\left( {a \ne 0} \right).\]

Vì parabol có đỉnh là \[G\left( {2;4} \right)\] và đi qua điểm O(0; 0) nên ta có:

\[\left\{ \begin{array}{l}c = 0\\ - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0.\end{array} \right.\]

Suy ra phương trình parabol là \[y = f\left( x \right) = - {x^2} + 4x.\]

Diện tích của cả cổng là \[S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|} _0^4 = \frac{{32}}{3}\] (m3).

Mặt khác, ta có chiều cao \[CF = DE = f\left( {0,9} \right) = 2,79\] (m);

\[CD = 4 - 2.0,9 = 2,2\] (m).

Diện tích hai cánh cổng là \[{S_{CDEF}} = CD.CF = 2,79.2,2 = 6,138\] (m2).

Diện tích phần trang trí hoa là: \[{S_{tt}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6,138 = \frac{{6793}}{{1500}}\] (m2).

Vậy tổng số tiền để làm cổng là: \[6,138.1200000 + \frac{{6793}}{{1500}}.900000 = 11441400\] (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}.\] Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right)\], \[y = 0,x = - 2,x = 3\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?

Cho hàm số  y = f ( x )  liên tục trên  R .  Gọi  S  là diện tích hình phẳng giới hạn bởi các đường  y = f ( x ) ,  y = 0 , x = − 2 , x = 3  (như hình vẽ). Mệnh đề nào dưới đây là đúng? (ảnh 1)

Xem đáp án » 16/10/2024 3,104

Câu 2:

II. Thông hiểu

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {\left( {x - 2} \right)^2} - 1\], trục hoành và hai đường thẳng \[x = 1,x = 2\] bằng

Xem đáp án » 16/10/2024 1,338

Câu 3:

Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = {3^x}\], \[y = 0,x = 0,x = 2.\]Mệnh đề nào dưới đây là đúng?

Xem đáp án » 16/10/2024 661

Câu 4:

Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = - 3,x = 2\]. Đặt \[a = \int\limits_{ - 3}^1 {f\left( x \right)dx} ,{\rm{ }}b = \int\limits_1^2 {f\left( x \right)dx.} \]

Gọi  S  là diện tích hình phẳng giới hạn bởi các đường  y = f ( x ) , trục hoành và hai đường thẳng  x = − 3 , x = 2 . Đặt  a = 1 ∫ − 3   f ( x ) d x , b = 2 ∫ 1   f ( x ) d x . (ảnh 1)

Mệnh đề nào dưới đây là đúng?

Xem đáp án » 16/10/2024 628

Câu 5:

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = \ln x,{\rm{ }}y = 1\] và hai đường thẳng \[x = 1,x = e\] bằng

Xem đáp án » 16/10/2024 604

Câu 6:

III. Vận dụng

Một người chạy trong thời gian 1 giờ, vận tốc \[v\] (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh \[I\left( {\frac{1}{2};8} \right)\] và trục đối xứng song song với trục tung như hình bên. Tính quãng đường \[s\] người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy?

Một người chạy trong thời gian 1 giờ, vận tốc  v  (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh  I ( 1/2 ; 8 )  và trục đối xứng song song với trục tung như hình bên. Tính quãng đường  s  người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy? (ảnh 1)

Xem đáp án » 16/10/2024 601

Bình luận


Bình luận