Câu hỏi:

21/10/2024 82

Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên 1 viên kéo trong túi, không trả lại. Sau đó, Hà lại lấy ngẫu nhiên thêm một viên kẹo khác từ trong túi. Biết rằng xác suất để Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}.\) Hỏi ban đầu trong túi có bao nhiêu viên kẹo?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: 10

Gọi A là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ nhất”

B là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ hai”.

Ta có: xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\), suy ra P(AB) = \(\frac{1}{3}\).

Gọi n là số viên kẹo ban đầu trong túi \(\left( {n \in {N^ * },n \ne 1} \right).\)

P(A) = \(\frac{6}{n}\); P(B | A) = \(\frac{5}{{n - 1}}\).

Theo công thức nhân xác suất, ta có:

P(AB) = P(A).P(A | B)

\( \Leftrightarrow \frac{6}{n}.\frac{5}{{n - 1}} = \frac{{30}}{{{n^2} - n}} = \frac{1}{3}\).

\( \Leftrightarrow {n^2} - n = 90 \Leftrightarrow {n^2} - n - 90 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = - 9\\n = 10.\end{array} \right.\)

Do \(n \in {N^ * }\) nên \(n = 10\) thỏa mãn.

Vậy ban đầu trong túi có 10 viên kẹo.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)

Xem đáp án » 21/10/2024 6,233

Câu 2:

II. Thông hiểu

Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).

Xem đáp án » 21/10/2024 3,952

Câu 3:

Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng viên bi. Giả sử lần đầu tiên bốc được bi trắng. Xác định xác suất lần thứ hai bốc được bi đỏ.

Xem đáp án » 21/10/2024 2,009

Câu 4:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,7\), \(P\left( {\overline B } \right) = 0,6.\) Khi đó:

a) \(P\left( {A|B} \right) = 0,6.\)

b) \(P\left( {B|\overline A } \right) = 0,4.\)

c) \(P\left( {\overline A |B} \right) = 0,45.\)

d) \(P\left( {\overline B |\overline A } \right) = 0,6.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 786

Câu 5:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,2024\), \(P\left( B \right) = 0,2025\). Tính \(P\left( {A|B} \right)\).

Xem đáp án » 21/10/2024 761

Câu 6:

Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.

a) \(A\) và \(B\) là hai biến cố độc lập.

b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.

c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.

d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.

Số mệnh đề sai trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 678

Câu 7:

Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.

Xem đáp án » 21/10/2024 585

Bình luận


Bình luận