Câu hỏi:
21/10/2024 82Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên 1 viên kéo trong túi, không trả lại. Sau đó, Hà lại lấy ngẫu nhiên thêm một viên kẹo khác từ trong túi. Biết rằng xác suất để Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}.\) Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: 10
Gọi A là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ nhất”
B là biến cố “Hà lấy được viên kẹo màu cam ở lần thứ hai”.
Ta có: xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\), suy ra P(AB) = \(\frac{1}{3}\).
Gọi n là số viên kẹo ban đầu trong túi \(\left( {n \in {N^ * },n \ne 1} \right).\)
P(A) = \(\frac{6}{n}\); P(B | A) = \(\frac{5}{{n - 1}}\).
Theo công thức nhân xác suất, ta có:
P(AB) = P(A).P(A | B)
\( \Leftrightarrow \frac{6}{n}.\frac{5}{{n - 1}} = \frac{{30}}{{{n^2} - n}} = \frac{1}{3}\).
\( \Leftrightarrow {n^2} - n = 90 \Leftrightarrow {n^2} - n - 90 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = - 9\\n = 10.\end{array} \right.\)
Do \(n \in {N^ * }\) nên \(n = 10\) thỏa mãn.
Vậy ban đầu trong túi có 10 viên kẹo.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)
Câu 2:
II. Thông hiểu
Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).
Câu 3:
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng viên bi. Giả sử lần đầu tiên bốc được bi trắng. Xác định xác suất lần thứ hai bốc được bi đỏ.
Câu 4:
Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,7\), \(P\left( {\overline B } \right) = 0,6.\) Khi đó:
a) \(P\left( {A|B} \right) = 0,6.\)
b) \(P\left( {B|\overline A } \right) = 0,4.\)
c) \(P\left( {\overline A |B} \right) = 0,45.\)
d) \(P\left( {\overline B |\overline A } \right) = 0,6.\)
Số mệnh đề đúng trong các mệnh đề trên là
Câu 5:
Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,2024\), \(P\left( B \right) = 0,2025\). Tính \(P\left( {A|B} \right)\).
Câu 6:
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.
a) \(A\) và \(B\) là hai biến cố độc lập.
b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.
c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.
d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.
Số mệnh đề sai trong các mệnh đề trên là:
Câu 7:
Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
về câu hỏi!