Câu hỏi:

21/10/2024 594

Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn toán hoặc Văn. Biết rằng có 23 học sinh giỏi Toán và có 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Khi đó:

a) Xác suất để học sinh được chọn giỏi Toán biết rằng học sinh đó cũng giỏi Văn là \(\frac{2}{5}.\)

b) Xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán bằng \(\frac{8}{{23}}.\)

c) Xác suất để học sinh được chọn không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn bằng \(\frac{{15}}{{23}}.\)

d) Xác suất để học sinh được chọn không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán bằng \(\frac{3}{5}.\)

Số mệnh đề đúng trong các mệnh đề trên là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố: “Học sinh được chọn giỏi môn Toán”

B là biến cố: “Học sinh được chọn giỏi môn Văn”

Suy ra \(\overline A \) là biến cố “Học sinh được chọn không giỏi môn Toán”

\(\overline B \) là biến cố “Học sinh được chọn không giỏi môn Văn”.

Số học sinh giỏi cả hai môn là: 23 + 20 – 35 =8.

a) Trong 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó giỏi môn Văn là

P(A | B) = \(\frac{8}{{20}} = \frac{2}{5}.\)

Do đó, ý a đúng.

b) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là

P(B | A) = \(\frac{8}{{23}}.\)

Do đó, ý b đúng.

c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

Xác suất để học sinh được chọn “không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn” là: P(\(\overline A \) | B) = \(\frac{{12}}{{20}} = \frac{3}{5}.\)

Do đó, ý c sai.

d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 – 8 = 15.

Xác suất để học sinh được chọn “không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán” là P(\(\overline B \) | A) = \(\frac{{15}}{{23}}.\)

Do đó, y d sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,2024\), \(P\left( B \right) = 0,2025\). Tính \(P\left( {A|B} \right)\).

Xem đáp án » 21/10/2024 3,468

Câu 2:

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10, biết rằng có ít nhất một con đã ra mặt 5 chấm.

Xem đáp án » 21/10/2024 2,701

Câu 3:

Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng viên bi. Giả sử lần đầu tiên bốc được bi trắng. Xác định xác suất lần thứ hai bốc được bi đỏ.

Xem đáp án » 21/10/2024 1,828

Câu 4:

III. Vận dụng

Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ bà 2 bạn nam. Thầy giáo gọi ngẫu nhiên một bạn lên bảng, khi đó:

a) Xác suất để có tên hiền là \(\frac{1}{{10}}.\)

b) Xác suất để có tên Hiền, biết bạn đó là nữ là \(\frac{3}{{17}}.\)

c) Xác suất để có tên Hiền, biết bạn đó là nam là \(\frac{2}{{13}}.\)

d) Nếu thầy giáo gọi 1 bạn có tên Hiền lên bảng thì xác suất để bạn đó là nam là \(\frac{3}{{17}}.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 1,352

Câu 5:

II. Thông hiểu

Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).

Xem đáp án » 21/10/2024 1,157

Câu 6:

Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)

Xem đáp án » 21/10/2024 818

Câu 7:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,7\), \(P\left( {\overline B } \right) = 0,6.\) Khi đó:

a) \(P\left( {A|B} \right) = 0,6.\)

b) \(P\left( {B|\overline A } \right) = 0,4.\)

c) \(P\left( {\overline A |B} \right) = 0,45.\)

d) \(P\left( {\overline B |\overline A } \right) = 0,6.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 719

Bình luận


Bình luận