Câu hỏi:

21/10/2024 13,458

II. Thông hiểu

Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( A \right)\)

\(P\left( {A \cap B} \right) = P\left( A \right) - P\left( {A \cap \overline B } \right) = 0,8 - 0,55 = 0,25.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Do \(A\) và \(B\) là hai biến cố độc lập, nên ta có:

\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( B \right)}} = P\left( A \right)\),

Suy ra \(P\left( {A|B} \right) = P\left( A \right) = 0,2024.\)

Lời giải

Đáp án đúng là: A

Gọi A là biến cố “Lần một bốc được bi trắng”.

B là biến cố “Lần thứ hai bốc được bi đỏ”.

Xác suất để lần hai bốc được bi đỏ biết lần một bốc được bi trắng là P(B | A).

Ta có: P(A) = \(\frac{{C_8^1}}{{C_{10}^1}} = \frac{4}{5}\); P(AB) = \(\frac{{C_8^1}}{{C_{10}^1}}.\frac{{C_2^1}}{{C_9^1}} = \frac{8}{{45}}.\)

Do đó, P(B | A) = \(\frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{8}{{45}}:\frac{4}{5} = \frac{2}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP