Đề kiểm tra Toán 12 Cánh diều Chương 6 có đáp án - Đề 1
47 người thi tuần này 4.6 147 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
\(P\left( {\overline A |B} \right) = 0,5\).
\(P\left( {\overline A |B} \right) = 0,6\).
\(P\left( {\overline A |B} \right) = 0,3\).
\(P\left( {\overline A |B} \right) = 0,4\).
Lời giải
Đáp án đúng: C
Với mọi biến cố \(A\) và \(B\), \(P\left( B \right) > 0\) ta có \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,7 = 0,3\).
Câu 2
\(\frac{5}{{12}}\).
\(\frac{3}{5}\).
\(\frac{1}{4}\).
\(\frac{7}{{30}}\).
Lời giải
Đáp án đúng: A
Lần thứ nhất lấy được bi đỏ khi đó trong hộp chỉ còn lại \[24\] viên bị gồm \[10\] viên bị trắng và \[14\] viên bị đỏ.
Khi đó xác suất để lần thứ hai lấy được bi trắng biết lần thứ nhất lấy được bị đỏ là:
\[P\left( {A|B} \right) = \frac{{C_{10}^1}}{{C_{24}^1}} = \frac{5}{{12}}\].
Câu 3
\(0,8.\)
\(0,7.\)
\(0,75.\)
\(0,6.\)
Lời giải
Đáp án đúng: A
Gọi \(A\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 1”;
Gọi \(B\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 2”.
Gọi \(C\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 2, biết công ty trúng giá cao nhất mảnh đất số 1” \( \Rightarrow P\left( C \right) = P\left( {B|A} \right) = P\left( B \right) = 0,8.\)
Lời giải
Đáp án đúng: A
Ta có: \[P\left( B \right) = 1 - P\left( {\overline B } \right) = 0,8\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,5 + 0,2.0,3 = 0,46\].
Câu 5
\(0,1875\).
\(0,48\).
\(0,333\).
\(0,95\).
Lời giải
Đáp án đúng: A
Theo công thức Bayes, ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,3.0,25}}{{0,4}} = 0,1875\).
Câu 6
\[0,25\].
\[\frac{{56}}{{65}}\].
\[0,65\].
\[0,5\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
