Đề kiểm tra Toán 12 Cánh diều Chương 5 có đáp án - Đề 1
47 người thi tuần này 4.6 72 lượt thi 11 câu hỏi 60 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng: B
Đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{2}\) có một vectơ chỉ phương là \(\overrightarrow u = \left( {2;\, - 1;\,2} \right)\).
Lời giải
Đáp án đúng: D
Từ phương trình mặt cầu ta có: \(a = 1;\,b = 2;\,c = - 3,\,d = - 2\).
Suy ra đường kính mặt cầu là: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {{1^2} + {2^2} + {{\left( { - 3} \right)}^2} - \left( { - 2} \right)} = 4\).
Câu 3
\(x - 2y - 3z + 6 = 0\).
\(x - 2y + 3z - 12 = 0\).
\(x - 2y - 3z - 6 = 0\).
\(x - 2y + 3z + 12 = 0\).
Lời giải
Đáp án đúng: D
Phương trình mặt phẳng đi qua điểm \(A\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 2;3} \right)\) là:
\(1\left( {x - 1} \right) - 2\left( {y - 2} \right) + 3\left( {z + 3} \right) = 0\)\( \Leftrightarrow x - 2y + 3z + 12 = 0\).
Câu 4
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\).
Lời giải
Đáp án đúng: D
Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 1\,;\,2\,;\,1} \right)\) và bán kính \(R = IA = \sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} = 3\) có phương trình là:
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\).
Câu 5
\[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\].
\[\left\{ \begin{array}{l}x = 1\\y = 1\\z = 1 + t\end{array} \right.\].
\[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\].
\[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 1\end{array} \right.\].
Lời giải
Đáp án đúng: B
Mặt phẳng \[\left( {Oxy} \right)\] có một vectơ pháp tuyến \(\overrightarrow n = \left( {0;0;1} \right)\).
Đường thẳng \(d\)vuông góc với mặt phẳng \[\left( {Oxy} \right)\] nên \(d\) có một vectơ chỉ phương \(\overrightarrow u = \left( {0;0;1} \right)\).
Phương trình tham số của \(d\) là \[\left\{ \begin{array}{l}x = 1\\y = 1\\z = 1 + t\end{array} \right.\].
Câu 6
\(\frac{2}{3}\).
\(\frac{7}{3}\).
\(\frac{8}{3}\).
\(\frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


