15 bài tập Một số bài toán thực tế liên quan đến Nguyên hàm của một số hàm số sơ cấp (có lời giải)
50 người thi tuần này 4.6 50 lượt thi 15 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Giả sử con lắc chuyển động theo phương trình: s = s(1). Suy ra s' (t) = v(t), do đó s(t) là một nguyên hàm của v(t). Ta có: \[\int {v\left( t \right)dt} = \int {4cost{\rm{dt}}} = 4sint + C.\]
Suy ra s(t)=4sint+C.
Tại thời điểm t = 0, ta có s(0) = 0, tức là 4sin0 + C = 0, hay C = 0. Vậy phương trình chuyển động của con lắc là: s(t) = 4sint.
Lời giải
a) Ta đã biết, công thức tính quãng đường s(t) xe ô tô đi được trong t (giây) là một nguyên hàm của hàm v(t). Do \[\int {\left( { - 10t + 30} \right)dt} {\rm{ }} = - 5{t^2} + 30t + C\]
nên ta có: \[s(t) = - 5{t^2} + 30t + C\] với C là hằng số. Do s(0) = 0 nên C = 0. Suy ra \[s(t) = - 5{t^2} + 30t\].
b) Xe ô tô dừng hẳn khi v(t) = 0, tức là – 10t + 30 = 0 hay t= 3.
Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.
c) Ta có: tốc độ 72 km/h cũng là tốc độ 20 m/s.
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là:
s(3) = − 5 .32 + 30 . 3 = 45 (m).
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 +45 = 65 (m).
Do 65 < 80 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối với xe ô tô đó.
Lời giải
a) Hàm số \({\rm{B}}({\rm{t}})\) là một nguyên hàm của hàm số \(B(t)\).
Ta có \(\int {{B^\prime }} (t)dt = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt\)\( = \int 2 0{t^3}dt - \int 3 00{t^2}dt + \int 1 000tdt.\)
Suy ra \(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + C\).
Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B(1) = 500\).
Do đó, \(5 \cdot {1^4} - 100 \cdot {1^3} + 500 \cdot {1^2} + C = 500\), suy ra \(C = 95\).
Vậy công thức của hàm số \({\rm{B}}({\rm{t}})\) biểu diễn số lượng khách tham dự lễ hội là
\(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + 95(0 \le t \le 15).\)
b) Ta có \(B(3) = 5 \cdot {3^4} - 100 \cdot {3^3} + 500 \cdot {3^2} + 95 = 2300\).
Vậy sau 3 giờ có 2300 khách tham dự lễ hội.
c) Số lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({\rm{B}}({\rm{t}})\) trên đoạn [0;15].
Ta có \({B^\prime }({\rm{t}}) = 20{{\rm{t}}^3} - 300{{\rm{t}}^2} + 1000{\rm{t}}\).
Trên khoảng \((0;15),{B^\prime }({\rm{t}}) = 0\) khi \(t = 5\) hoặc \({\rm{t}} = 10\).
\(B(0) = 95;B(5) = 3220;B(10) = 95;B(15) = 28220.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}B(t) = 28220\) tại \(t = 15\).
Vậy số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ.
d) Tốc độ thay đổi lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({B^\prime }({\rm{t}})\) trên đoạn [0 ; 15].
Ta có \({B^{\prime \prime }}(t) = {\left( {20{t^3} - 300{t^2} + 1000t} \right)^\prime } = 60{t^2} - 600t + 1000\).
Trên khoảng \((0;15),{{\rm{B}}^{\prime \prime }}({\rm{t}}) = 0\) khi \(t = \frac{{15 - 5\sqrt 3 }}{3}\) hoặc \(t = \frac{{15 + 5\sqrt 3 }}{3}\).
\({{\rm{B}}^\prime }(0) = 0;B\left( {\frac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B\left( {\frac{{15 + 5\sqrt 3 }}{3}} \right) \approx - 962,25;{\rm{B}}(15) = 15000.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}{B^\prime }(t) = 15000\) tại \(t = 15\).
Lời giải
Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).
Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).
Suy ra \(M(t) = 800t - {t^2} + C\).
Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).
Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).
Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).
Số ngày công tính đến khi hoàn thành dự án là
\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là
\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).
Lời giải
Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).
Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)
Suy ra \(s(t) = 4\sin t + C\).
Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).
Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.