Câu hỏi:

19/08/2025 171 Lưu

Đối vối các dự án xây dựng, chi phí nhân công lao động được tính theo số ngày công. Gọi \(m(t)\) là số lượng công nhân được sử dụng ở ngày thứ t (kể từ khi khởi công dự án). Gọi \(M(t)\) là số ngày công được tính đến hết ngày thứ \(t\) (kể từ khi khởi công dự án). Trong kinh tế xây dựng, người ta đã biết rằng \({M^\prime }(t) = m(t)\).

Một công trình xây dựng dự kiến hoàn thành trong 400 ngày. Số lượng công nhân được sử dụng cho bởi hàm số: \(m(t) = 800 - 2t,\) trong đó \(t\) tính theo ngày \((0 \le t \le 400),m(t)\) tính theo người (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016). Đơn giá cho một ngày công lao động là 400000 đồng. Tính chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).

Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).

Suy ra \(M(t) = 800t - {t^2} + C\).

Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).

Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).

Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).

Số ngày công tính đến khi hoàn thành dự án là

\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).

Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là

\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta đã biết, công thức tính quãng đường s(t) xe ô tô đi được trong t (giây) là một nguyên hàm của hàm v(t). Do \[\int {\left( { - 10t + 30} \right)dt} {\rm{ }} =  - 5{t^2} + 30t + C\]

nên ta có: \[s(t) =  - 5{t^2} + 30t + C\] với C là hằng số. Do s(0) = 0 nên C = 0. Suy ra \[s(t) =  - 5{t^2} + 30t\].

b) Xe ô tô dừng hẳn khi v(t) = 0, tức là – 10t + 30 = 0 hay t= 3.

Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.

c) Ta có: tốc độ 72 km/h cũng là tốc độ 20 m/s.

Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là:

s(3) = − 5 .32 + 30 . 3 = 45 (m).

Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 +45 = 65 (m).

Do 65 < 80 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối với xe ô tô đó.

Lời giải

a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:

\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t =  - 4,9{t^2} + 19,6t + C\)

Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).

Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) =  - 4,9{t^2} + 19,6t + 24,5\)

b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t =  - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).

Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.