Câu hỏi:

08/08/2025 3 Lưu

Kí hiệu \(h(x)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao \(2\;{\rm{m}}\). Trong 10 năm tiếp theo, cây phát triền với tốc độ \({h^\prime }(x) = \frac{1}{x}(\;{\rm{m}}/{\rm{nam}})\).

a) Xác định chiều cao của cây sau \(x\) năm \((1 \le x \le 11)\).

b) Sau bao nhiêu năm cây cao \(3\;{\rm{m}}\) ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(h(x) = \int {{h^\prime }} (x){\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x = \ln x + C\) với \(1 \le x \le 11\).

Vì \(h(1) = 2\) nên \(\ln 1 + C = 2\), suy ra \(C = 2\).

Vậy chiều cao của cây sau \(x\) năm là \(h(x) = \ln x + 2(1 \le x \le 11)\).

b) Ta có \(h(x) = 3 \Leftrightarrow \ln x + 2 = 3 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \approx 2,718\) năm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).

Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)

Suy ra \(s(t) = 4\sin t + C\).

Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).

Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).

Lời giải

Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).

Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).

Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).

Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).

Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).

Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).