Một quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) vởi vận tốc được tính bởi công thức \(v(t) = - 9,8t + 19,6(\;{\rm{m}}/{\rm{s}})\).
a) Viết công thức tính độ cao của quả bóng theo thời gian \(t\).
b) Sau bao nhiêu lâu kể từ khi ném lên thì quả bóng chạm đất?
Một quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) vởi vận tốc được tính bởi công thức \(v(t) = - 9,8t + 19,6(\;{\rm{m}}/{\rm{s}})\).
a) Viết công thức tính độ cao của quả bóng theo thời gian \(t\).
b) Sau bao nhiêu lâu kể từ khi ném lên thì quả bóng chạm đất?
Quảng cáo
Trả lời:

a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:
\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t = - 4,9{t^2} + 19,6t + C\)
Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).
Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) = - 4,9{t^2} + 19,6t + 24,5\)
b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t = - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).
Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số h(t) là một nguyên hàm của hàm số \(v({\rm{t}})\).
Ta có: \(\int v (t)dt = \int {\left( { - 0,1{t^3} + {t^2}} \right)} dt = - 0,1\int {{t^3}} dt + \int {{t^2}} dt = - 0,025{t^4} + \frac{{{t^3}}}{3} + C\)
Suy ra \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + C\).
Vi cây cà chua khi trồng có chiều cao 5 cm nên \({\rm{h}}(0) = 5\), suy ra \({\rm{C}} = 5\).
Vậy công thức xác định hàm số h(t) là: \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).
b) Xét hàm số \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).
Ta có \(h(t) = v(t) = - 0,1{t^3} + {t^2};h(t) = 0\) khi \(t = 0\) hoặc \({\rm{t}} = 10\).
Bảng biến thiên của hàm số \(h(t)\) trên \([0; + \infty )\) như sau:

Từ bảng biến thiên ta thấy giai đoạn tăng trưởng của cây cà chua đó kéo dài 10 tuần.
c) Từ bảng biến thiên ở câu b, ta thấy chiều cao tối đa của cây cà chua đó là \(\frac{{265}}{3}\) cm .
d) Xét hàm tốc độ tăng chiều cao của cây cà chua: \(v(t) = - 0,1{t^3} + {t^2}(t \ge 0)\).
Ta có \({v^{\prime \prime }}({\rm{t}}) = - 0,3{{\rm{t}}^2} + 2{\rm{t}};{\rm{v}}\) (t) \( = 0\) khi \({\rm{t}} = 0\) hoặc \({\rm{t}} = \frac{{20}}{3}\).
Bảng biến thiên của hàm số \(v(t)\) trên \([0; + \infty )\) như sau:

Từ bảng biến thiên ta suy ra vào thời điểm cây cà chua đó phát triển nhanh nhất thì cây cà chua cao \(\frac{{400}}{{27}}\;{\rm{cm}}\).
Lời giải
a) \(h(x) = \int {{h^\prime }} (x){\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x = \ln x + C\) với \(1 \le x \le 11\).
Vì \(h(1) = 2\) nên \(\ln 1 + C = 2\), suy ra \(C = 2\).
Vậy chiều cao của cây sau \(x\) năm là \(h(x) = \ln x + 2(1 \le x \le 11)\).
b) Ta có \(h(x) = 3 \Leftrightarrow \ln x + 2 = 3 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \approx 2,718\) năm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.