Câu hỏi:

08/08/2025 3 Lưu

Một quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) vởi vận tốc được tính bởi công thức \(v(t) =  - 9,8t + 19,6(\;{\rm{m}}/{\rm{s}})\).

a) Viết công thức tính độ cao của quả bóng theo thời gian \(t\).

b) Sau bao nhiêu lâu kể từ khi ném lên thì quả bóng chạm đất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:

\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t =  - 4,9{t^2} + 19,6t + C\)

Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).

Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) =  - 4,9{t^2} + 19,6t + 24,5\)

b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t =  - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).

Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).

Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)

Suy ra \(s(t) = 4\sin t + C\).

Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).

Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).

Lời giải

Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).

Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).

Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).

Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).

Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).

Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).