Một quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) vởi vận tốc được tính bởi công thức \(v(t) = - 9,8t + 19,6(\;{\rm{m}}/{\rm{s}})\).
a) Viết công thức tính độ cao của quả bóng theo thời gian \(t\).
b) Sau bao nhiêu lâu kể từ khi ném lên thì quả bóng chạm đất?
Một quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) vởi vận tốc được tính bởi công thức \(v(t) = - 9,8t + 19,6(\;{\rm{m}}/{\rm{s}})\).
a) Viết công thức tính độ cao của quả bóng theo thời gian \(t\).
b) Sau bao nhiêu lâu kể từ khi ném lên thì quả bóng chạm đất?
Quảng cáo
Trả lời:
a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:
\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t = - 4,9{t^2} + 19,6t + C\)
Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).
Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) = - 4,9{t^2} + 19,6t + 24,5\)
b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t = - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).
Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).
Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)
Suy ra \(s(t) = 4\sin t + C\).
Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).
Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).
Lời giải
Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).
Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).
Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).
Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).
Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).
Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.