22 câu trắc nghiệm Toán 12 Cánh diều Bài tập cuối chương IV (Đúng sai - Trả lời ngắn) có đáp án
17 người thi tuần này 4.6 17 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn D
Diện tích cần tìm là \(S = \int\limits_{ - 2}^1 {\left| {\left( { - {x^2} + 3} \right) - \left( {2{x^2} + 3x - 3} \right)} \right|dx} \)\( = \int\limits_{ - 2}^1 {\left| { - 3{x^2} - 3x + 6} \right|dx} \)\( = \int\limits_{ - 2}^1 {\left( { - 3{x^2} - 3x + 6} \right)dx} \)
\( = \left. {\left( { - {x^3} - 3\frac{{{x^2}}}{2} + 6x} \right)} \right|_{ - 2}^1 = 13,5\).
Câu 2
Lời giải
Chọn B
\(F\left( x \right) = \int {\frac{1}{x}dx} = \ln \left( { - x} \right) + C,\forall x \in \left( { - \infty ;0} \right)\).
Lời giải
Chọn B
\(\int\limits_0^4 {f'\left( x \right)dx = \left. {f\left( x \right)} \right|_0^4} = f\left( 4 \right) - f\left( 0 \right)\)\( \Rightarrow f\left( 4 \right) = \int\limits_0^4 {f'\left( x \right)} + f\left( 0 \right) = 6 + 2 = 8\).
Câu 4
Lời giải
Chọn C
\(\int\limits_1^2 {3f(x)dx} = 3\int\limits_1^2 {f(x)dx} = 3.4 = 12\).
Câu 5
Lời giải
Chọn B
Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).
Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt} = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.