Câu hỏi:

17/10/2025 54 Lưu

Cho hàm số \(f\left( x \right) = {x^2} + 2x\)\(F\left( x \right)\) là một nguyên hàm của hàm số\(f\left( x \right)\).

a) \[\int\limits_1^3 {f\left( x \right)dx} = F\left( 3 \right) - F\left( 1 \right)\].

b) Nếu \(F\left( 0 \right) = 1\) thì \(F\left( 2 \right) = \frac{{25}}{3}\).

c) Nếu \[\int\limits_0^2 {kf\left( x \right)dx} = 2\] thì \(k = \frac{3}{{10}}\).

d) Biết \[\int\limits_1^3 {\frac{{f\left( x \right)}}{{{x^2}}}dx} = a + a\ln b\], \(a,b \in \mathbb{Z}\). Khi đó: \(3a - 5b = - 8\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\int\limits_1^3 {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_1^3 = F\left( 3 \right) - F\left( 1 \right)\].

b) \(F\left( x \right) = \int {\left( {{x^2} + 2x} \right)dx}  = \frac{{{x^3}}}{3} + {x^2} + C\).

Mà \(F\left( 0 \right) = 1 \Rightarrow C = 1\). Do đó \(F\left( x \right) = \frac{{{x^3}}}{3} + {x^2} + 1\).

Vậy \(F\left( 2 \right) = \frac{{{2^3}}}{3} + {2^2} + 1 = \frac{{23}}{3}\).

c) \[\int\limits_0^2 {kf\left( x \right)dx}  = 2\]\[ \Leftrightarrow k\int\limits_0^2 {\left( {{x^2} + 2x} \right)dx}  = 2\]\[ \Leftrightarrow \left. {k\left( {\frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^2 = 2\]\[ \Leftrightarrow \frac{{20k}}{3} = 2\]\[ \Leftrightarrow k = \frac{3}{{10}}\].

d) \[\int\limits_1^3 {\frac{{f\left( x \right)}}{{{x^2}}}dx}  = \int\limits_1^3 {\frac{{{x^2} + 2x}}{{{x^2}}}dx} \]\[ = \int\limits_1^3 {\left( {1 + \frac{2}{x}} \right)dx} \]\[ = \left. {\left( {x + 2\ln x} \right)} \right|_1^3\]\[ = 2 + 2\ln 3\].

Suy ra a = 2; b = 3. Do đó \(3a - 5b =  - 9\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).

Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt}  = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.

Câu 2

A. \(V = \int\limits_{ - 1}^1 {3x} dx.\)                    
B. \(V = \int\limits_{ - 1}^1 {{{(3x)}^2}} dx.\)                           
C. \(V = \int\limits_{ - 1}^1 {(6x} {)^2}dx.\)                              
D. \(V = \int\limits_{ - 1}^1 {6x} dx.\)

Lời giải

Chọn B

Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).

Câu 4

Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).

a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).

b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).

c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).

d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(V = \frac{{9\pi }}{2}.\)                                      
B. \(V = \frac{{15\pi }}{2}.\)               
C. \(V = 21\pi .\)             
D. \(V = 9\pi .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP