Câu hỏi:

17/10/2025 9 Lưu

Nhân dịp đi dã ngoại, lớp 12A dự kiến dựng một cái trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 5 mét, đỉnh trại cách nền 3 mét. Thể tích phần không gian bên trong lều trại bằng bao nhiêu mét khối?

Nhân dịp đi dã ngoại, lớp 12A dự kiến dựng một cái trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 5 mét, đỉnh trại cách nền 3 mét.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn hệ trục tọa độ như hình vẽ, hình dạng khung trại là parabol có phương trình \(y = f\left( x \right) = a{x^2} + bx + c\), vì đỉnh trại cao 3m và bề ngang rộng 3m nên parabol đi qua điểm \(\left( {0;3} \right)\) và \(\left( {\frac{3}{2};0} \right)\).

Ta có : \[\left\{ \begin{array}{l}b = 0\\3 = c\\0 = a.{\left( {\frac{3}{2}} \right)^2} + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\a =  - \frac{4}{3}\\c = 3\end{array} \right.\]

Suy ra parabol có phương trình \(y = f\left( x \right) =  - \frac{4}{3}{x^2} + 3\).

Mỗi mặt phẳng vuông góc \[Ox\] tại điểm có hoành độ \[x,\,0 \le x \le h\] cắt khối chóp theo mặt cắt là hình chữ nhật có độ dài các cạnh lần lượt là \[5\] và \[\,\left| {f\left( x \right)} \right|\], có diện tích \(S\left( x \right) = 5.\left| {f\left( x \right)} \right|\) , với \( - \frac{3}{2} \le x \le \frac{3}{2}\).

Vậy thể tích phần không gian trong trại là  \(V = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {5.\left| {f\left( x \right)} \right|} dx = 5.\int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left| { - \frac{4}{3}{x^2} + 3} \right|dx = 30\,\,\,{m^3}} \).

Trả lời: 30.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(V = \int\limits_{ - 1}^1 {3x} dx.\)                    
B. \(V = \int\limits_{ - 1}^1 {{{(3x)}^2}} dx.\)                           
C. \(V = \int\limits_{ - 1}^1 {(6x} {)^2}dx.\)                              
D. \(V = \int\limits_{ - 1}^1 {6x} dx.\)

Lời giải

Chọn B

Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).

Câu 2

Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).

a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).

b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).

c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).

d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).

Lời giải

a) Có \(f'\left( x \right) = 1 + \frac{6}{{{x^2}}} = g\left( x \right)\).

Do đó f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).

b) \(\int {f\left( x \right)dx}  = \int {\left( {x + 5 - \frac{6}{x}} \right)dx}  = \frac{{{x^2}}}{2} + 5x - 6\ln \left| x \right| + C\).

c) Có \(\int\limits_1^2 {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_1^2 = F\left( 2 \right) - F\left( 1 \right)\)\( \Rightarrow F\left( 2 \right) = F\left( 1 \right) + \int\limits_1^2 {f\left( x \right)dx}  = 5 + \int\limits_1^2 {f\left( x \right)dx} \).

d) \(G\left( x \right) = \frac{{{x^2}}}{2} + 5x - 6\ln \left| x \right| + C = \left\{ \begin{array}{l}\frac{{{x^2}}}{2} + 5x - 6\ln x + {C_1}\;\;khi\;x \ge 0\\\frac{{{x^2}}}{2} + 5x - 6\ln \left( { - x} \right) + {C_2}\;\;khi\;x < 0\end{array} \right.\).

Ta có \(G\left( 1 \right) = 4 \Rightarrow \frac{1}{2} + 5 + {C_1} = 4 \Rightarrow {C_1} =  - \frac{3}{2}\).

Có \(G\left( 2 \right) + G\left( { - 1} \right) = 5\)\( \Leftrightarrow 12 - 6\ln 2 - \frac{3}{2} - \frac{9}{2} + {C_2} = 5 \Rightarrow {C_2} = 6\ln 2 - 1\).

Khi đó \(G\left( { - 6} \right) = \frac{{36}}{2} - 30 - 6\ln 6 + 6\ln 2 - 1 =  - 13 - 6\ln 3\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{\sqrt 2 - 1}}{2}.\)                                   
B. \(\sqrt 2 - 1.\)                                         
C. \(\sqrt 2 + 1.\)            
D. \(\frac{{1 - \sqrt 2 }}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.  4.                                 
B. 8.                                
C.  7.  
D.  \(2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 4.                                 
B.  8.                                 
C.  12.                                          
D. \(6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(V = \frac{{9\pi }}{2}.\)                                      
B. \(V = \frac{{15\pi }}{2}.\)               
C. \(V = 21\pi .\)             
D. \(V = 9\pi .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP