Bác Bình muốn làm một cái cửa bằng inox hình parabol có chiều cao từ mặt đất đến đỉnh là 3 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Biết rằng giá vật liệu và tiền công mỗi mét vuông là 1700000 đồng. Vậy bác Bình phải trả bao nhiêu tiền để làm cái cửa đó (đơn vị triệu đồng)? ( Làm tròn kết quả đến hàng phần mười)
Bác Bình muốn làm một cái cửa bằng inox hình parabol có chiều cao từ mặt đất đến đỉnh là 3 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Biết rằng giá vật liệu và tiền công mỗi mét vuông là 1700000 đồng. Vậy bác Bình phải trả bao nhiêu tiền để làm cái cửa đó (đơn vị triệu đồng)? ( Làm tròn kết quả đến hàng phần mười)
Quảng cáo
Trả lời:
Gọi phương trình parabol \(\left( P \right):y = a{x^2} + bx + c\). Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ \(Oxy\) sao cho \(\left( P \right)\) có đỉnh \(I \in Oy\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3 = c,\left( {I(0;3) \in \left( P \right)} \right)}\\{\frac{9}{4}a - \frac{3}{2}b + c = 0\left( {A( - \frac{3}{2};0) \in \left( P \right)} \right)}\\{\frac{9}{4}a + \frac{3}{2}b + c = 0\left( {B(\frac{3}{2};0) \in \left( P \right)} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c = 3}\\{a = - \frac{4}{3}}\\{b = 0}\end{array}} \right.} \right.\).
Vậy \(\left( P \right):y = - \frac{4}{3}{x^2} + 3\).
Dựa vào đồ thị, diện tích cửa parabol là: .
Số tiền phải trả là: \(6.1700000 = 10200000 = 10,2\) triệu đồng.
Trả lời: 10,2.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).
Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt} = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.
Câu 2
Lời giải
Chọn B
Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
