Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Quảng cáo
Trả lời:

a) Phương trình hoành độ giao điểm: \({x^2} = - x\)\( \Leftrightarrow {x^2} + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 0\end{array} \right.\).
Vậy đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng (H1) là \({S_1} = \int\limits_{ - 1}^0 {\left| {{x^2}} \right|dx} = \int\limits_{ - 1}^0 {{x^2}dx} = \left. {\frac{{{x^3}}}{3}} \right|_{ - 1}^0 = \frac{1}{3}\).
c) Thể tích khối tròn xoay sinh ra khi quay hình (H1) quanh trục Ox bằng
\(V = \pi \int\limits_{ - 1}^0 {{x^4}dx} = \left. {\pi \frac{{{x^5}}}{5}} \right|_{ - 1}^0 = \frac{\pi }{5}\).
d) Diện tích hình phẳng (H2) là \({S_2} = \int\limits_{ - 1}^0 {\left| {{x^2} + x} \right|dx} = - \int\limits_{ - 1}^0 {\left( {{x^2} + x} \right)dx} = \left. { - \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 = \frac{1}{6}\).
Có \(\frac{{{S_1}}}{{{S_2}}} = 2\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).
Câu 2
Lời giải
Chọn B
Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).
Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt} = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.
Câu 3
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.