11 câu trắc nghiệm Toán 12 Cánh diều Bài 1: Nguyên hàm có đáp án
41 người thi tuần này 4.6 99 lượt thi 11 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn đáp án C
Ta có \[\int {f(x)dx = } F(x) + C \Leftrightarrow F'\left( x \right) = f\left( x \right)\] nên phương án A, B, D đúng.
Câu 2
Lời giải
Chọn đáp án A
Theo tính chất nguyên hàm thì \(\left( I \right)\) và \(\left( {II} \right)\) là đúng, \(\left( {III} \right)\) sai.
Câu 3
B. \({F_2}\left( x \right) - {F_1}\left( x \right) + C\).
Lời giải
Chọn đáp án C
Do \[I = \int {\left[ {2g\left( x \right) - f\left( x \right)} \right]{\rm{d}}x} = 2\int {g\left( x \right)} {\rm{d}}x - \int {f\left( x \right)} {\rm{d}}x = 2{F_2}\left( x \right) - {F_1}\left( x \right) + C\].
Lời giải
Chọn đáp án A
Ta có:
\[\int {\left( {2x - 1} \right){\rm{d}}x = {x^2} - x + {c_1}} \];
\[\int {\left( {3{x^2} - 2} \right){\rm{d}}x} = {x^3} - 2x + {c_2}\]
Suy ra \[F\left( x \right) = \int {f\left( x \right){\rm{d}}x = } \left\{ \begin{array}{l}{x^2} - x + {C_1}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + {C_2}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\]
Mà ta có \[F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\]
Mặt khác hàm số \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] nên \[y = F\left( x \right)\] liên tục tại \[x = 1\]
Suy ra \[\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) \Rightarrow {C_1} = 1\].
Khi đó ta có: \[F\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + 2{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}F\left( { - 1} \right) = 3\\F\left( 2 \right) = 3\end{array} \right..\]
Vậy \[F\left( { - 1} \right) + 2F\left( 2 \right) = 9\].
Lời giải
Chọn đáp án D
Khi \(x \ge 1\) thì \(F(x) = \int f (x)dx = \int {(2x + 3)} dx = {x^2} + 3x + {C_1}\)
Khi \(x < 1\) thì \(F(x) = \int f (x)dx = \int {\left( {3{x^2} + 2} \right)} dx = {x^3} + 2x + {C_2}\)
Theo giả thiết \(F(0) = 2 \Rightarrow {C_2} = 2\) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) = 5\) nên hàm số \(f(x)\) liên tục tại \(x = 1\).
Suy ra hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).
Do đó hàm số \(F(x)\) liên tục trên \(\mathbb{R} \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} F(x) = \mathop {\lim }\limits_{x \to {1^ - }} F(x) \Rightarrow {C_1} + 4 = {C_2} + 3 \Rightarrow {C_1} = 1\)
Vậy \(F( - 1) + 2F(2) = - 3 + {C_2} + 2\left( {10 + {C_1}} \right) = 21\)Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
D. \(f\left( x \right) = x\cos x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
B. \({f_3}\left( x \right) = \frac{{\sqrt[3]{{{x^2}}}}}{3} + \frac{1}{{\sqrt x }} + \frac{3}{2}\sqrt x \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo