Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}2x - 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\3{x^2} - 2{\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\], giả sử \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] thỏa mãn \[F\left( 0 \right) = 2\].Giá trị của \[F\left( { - 1} \right) + 2F\left( 2 \right)\] bằng.
Quảng cáo
Trả lời:

Chọn đáp án A
Ta có:
\[\int {\left( {2x - 1} \right){\rm{d}}x = {x^2} - x + {c_1}} \];
\[\int {\left( {3{x^2} - 2} \right){\rm{d}}x} = {x^3} - 2x + {c_2}\]
Suy ra \[F\left( x \right) = \int {f\left( x \right){\rm{d}}x = } \left\{ \begin{array}{l}{x^2} - x + {C_1}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + {C_2}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\]
Mà ta có \[F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\]
Mặt khác hàm số \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] nên \[y = F\left( x \right)\] liên tục tại \[x = 1\]
Suy ra \[\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) \Rightarrow {C_1} = 1\].
Khi đó ta có: \[F\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + 2{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}F\left( { - 1} \right) = 3\\F\left( 2 \right) = 3\end{array} \right..\]
Vậy \[F\left( { - 1} \right) + 2F\left( 2 \right) = 9\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án A
Ta có \[F'\left( x \right) = {\left( {\sqrt[3]{x} + 2\sqrt x + x\sqrt x } \right)^\prime } = {\left( {{x^{\frac{1}{3}}} + 2\sqrt x + {x^{\frac{3}{2}}}} \right)^\prime } = \frac{1}{{3\sqrt[3]{{{x^2}}}}} + \frac{1}{{\sqrt x }} + \frac{3}{2}\sqrt x \].
Lời giải
Chọn đáp án D
\(F'\left( x \right) = {\left( {x\sin x + \cos x + 2024} \right)^\prime } = \sin x + x\cos x - \sin x = x\cos x\), \(\forall x \in \mathbb{R}\)
\( \Rightarrow \) Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = x\cos x\) trên \(\mathbb{R}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.