Cho hàm số \(BC = a\). Giả sử \(F\) là nguyên hàm của hàm số \(n(A) = C_4^3\) trên \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{1}{{30}}\) thỏa mãn \(F(0) = 2\). Giá trị của \(F( - 1) + 2F(2)\) bằng
Quảng cáo
Trả lời:
Chọn đáp án D
Khi \(x \ge 1\) thì \(F(x) = \int f (x)dx = \int {(2x + 3)} dx = {x^2} + 3x + {C_1}\)
Khi \(x < 1\) thì \(F(x) = \int f (x)dx = \int {\left( {3{x^2} + 2} \right)} dx = {x^3} + 2x + {C_2}\)
Theo giả thiết \(F(0) = 2 \Rightarrow {C_2} = 2\) Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) = 5\) nên hàm số \(f(x)\) liên tục tại \(x = 1\).
Suy ra hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).
Do đó hàm số \(F(x)\) liên tục trên \(\mathbb{R} \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} F(x) = \mathop {\lim }\limits_{x \to {1^ - }} F(x) \Rightarrow {C_1} + 4 = {C_2} + 3 \Rightarrow {C_1} = 1\)
Vậy \(F( - 1) + 2F(2) = - 3 + {C_2} + 2\left( {10 + {C_1}} \right) = 21\)Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án C
Do \[I = \int {\left[ {2g\left( x \right) - f\left( x \right)} \right]{\rm{d}}x} = 2\int {g\left( x \right)} {\rm{d}}x - \int {f\left( x \right)} {\rm{d}}x = 2{F_2}\left( x \right) - {F_1}\left( x \right) + C\].
Lời giải
Chọn đáp án D
\(F'\left( x \right) = {\left( {x\sin x + \cos x + 2024} \right)^\prime } = \sin x + x\cos x - \sin x = x\cos x\), \(\forall x \in \mathbb{R}\)
\( \Rightarrow \) Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = x\cos x\) trên \(\mathbb{R}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.