(Trả lời ngắn) 18 bài tập Nguyên hàm của một số hàm số sơ cấp (có lời giải)
62 người thi tuần này 4.6 167 lượt thi 18 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Ta có \[F\left( x \right) = \int {f\left( x \right)dx = } \int {\left( {3{x^2} - 4x + 1} \right)dx = {x^3} - 2{x^2} + x + C} \]. Mà \(F\left( 2 \right) = 2\) nên suy ra \(C = 0\)
Vậy hàm số \(F\left( x \right) = {x^3} - 2{x^2} + x\). Suy ra \(F\left( 3 \right) = 12\).
Lời giải
Trả lời: \(0,49\)
Ta có: \(f\left( x \right) = \left( {{x^2} - 2} \right)\left( {2x + 1} \right)\)\( = 2{x^3} + {x^2} - 4x - 2\).
Suy ra \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} = \int {\left( {2{x^3} + {x^2} - 4x - 2} \right){\rm{d}}x} \)
\( = \int {2{x^3}{\rm{d}}x} + \int {{x^2}{\rm{d}}x} - \int {4x{\rm{d}}x} - \int {2{\rm{d}}x} \)
\( = \frac{1}{2}{x^4} + \frac{1}{3}{x^3} - 2{x^2} - 2x + C,\,C \in \mathbb{R}\)
Mà \(F\left( { - 1} \right) = \frac{1}{6}\) nên suy ra \(C = 0\).
Vậy hàm số \(F\left( x \right) = = \frac{1}{2}{x^4} + \frac{1}{3}{x^3} - 2{x^2} - 2x \Rightarrow F\left( { - \frac{1}{2}} \right) = \frac{{47}}{{96}} \approx 0,49\)
Lời giải
Trả lời: 11
Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t} = - \frac{{9,81}}{2}{t^2} + 29,43t + C\).
Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).
Vậy \(h\left( t \right) = - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).
Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx - 5\).
Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

