Một vật được ném lên từ độ cao 300 m với vận tốc được cho bởi công thức \(v\left( t \right) = - 9,81t + 29,43\,\left( {{\rm{m/s}}} \right)\) (Nguồn: R.Larson anh B. Edwards, Calculus 10e, Cengage). Gọi \(h\left( t \right)\,\left( {\rm{m}} \right)\) là độ cao của vật tại thời điểm \(t\left( {\rm{s}} \right)\). Sau bao lâu kể từ khi bắt đầu được ném lên thì vật đó chạm đất (làm tròn kết quả đến hàng đơn vị của mét)?
Một vật được ném lên từ độ cao 300 m với vận tốc được cho bởi công thức \(v\left( t \right) = - 9,81t + 29,43\,\left( {{\rm{m/s}}} \right)\) (Nguồn: R.Larson anh B. Edwards, Calculus 10e, Cengage). Gọi \(h\left( t \right)\,\left( {\rm{m}} \right)\) là độ cao của vật tại thời điểm \(t\left( {\rm{s}} \right)\). Sau bao lâu kể từ khi bắt đầu được ném lên thì vật đó chạm đất (làm tròn kết quả đến hàng đơn vị của mét)?
Quảng cáo
Trả lời:
Trả lời: 11
Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t} = - \frac{{9,81}}{2}{t^2} + 29,43t + C\).
Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).
Vậy \(h\left( t \right) = - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).
Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx - 5\).
Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\)\( \Rightarrow h(t) = \int {\frac{1}{{\sqrt[4]{t}}}} dt = \int {{t^{ - \frac{1}{4}}}} dt = \frac{{{t^{ - \frac{1}{4} + 1}}}}{{^{ - \frac{1}{4} + 1}}} + C = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)
năm đầu tiên cây cao 1m nên \(h(1) = 1,5 \Leftrightarrow 1,5 = \frac{4}{3}\sqrt[4]{1} + C \Rightarrow C = \frac{1}{6}\)
\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6}\)
cây cao được 3m nên \(h(t) = 3 \Leftrightarrow \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6} = 3 \Leftrightarrow \sqrt[4]{{{t^3}}} = \frac{{17}}{8} \Rightarrow t \approx 2,73\)
Lời giải
a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\[s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 10t + 20} \right)\,} \,dx = - 5{t^2} + 20t + C\]
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 10t + 20 = 0 \Rightarrow t = 2\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 2 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 2 \right) = - {5.2^2} + 20.2 = 20\left( m \right)\)
Do \(40 > 20\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) \[72\;km/h = 20m/s\]
người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[20m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[20 + 20 = 40\left( m \right)\]
Do chướng ngại vật trên đường cách đó \(40m\) xe khi bắt đầu đạp phanh nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

