Câu hỏi:

19/08/2025 39 Lưu

Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {{x^2} - 2} \right)\left( {2x + 1} \right)\) và \(F\left( { - 1} \right) = \frac{1}{6}\). Tính \(F\left( { - \frac{1}{2}} \right)\) (viết kết quả dưới dạng số thập phân và làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(0,49\)

Ta có: \(f\left( x \right) = \left( {{x^2} - 2} \right)\left( {2x + 1} \right)\)\( = 2{x^3} + {x^2} - 4x - 2\).

Suy ra \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x}  = \int {\left( {2{x^3} + {x^2} - 4x - 2} \right){\rm{d}}x} \)

                      \( = \int {2{x^3}{\rm{d}}x}  + \int {{x^2}{\rm{d}}x}  - \int {4x{\rm{d}}x}  - \int {2{\rm{d}}x} \)

                       \( = \frac{1}{2}{x^4} + \frac{1}{3}{x^3} - 2{x^2} - 2x + C,\,C \in \mathbb{R}\)

Mà \(F\left( { - 1} \right) = \frac{1}{6}\) nên suy ra \(C = 0\).

Vậy hàm số \(F\left( x \right) =  = \frac{1}{2}{x^4} + \frac{1}{3}{x^3} - 2{x^2} - 2x \Rightarrow F\left( { - \frac{1}{2}} \right) = \frac{{47}}{{96}} \approx 0,49\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Quãng đường viên đạn đi được là: \(s\left( t \right) = \int {\left( {24,5 - 9,8t} \right)} \,dx = 24,5t - 4,9{t^2} + C\)

\( \Rightarrow s\left( t \right) = 24,5t - 4,9{t^2} + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) = 24,5t - 4,9{t^2}\)

sau 2 giây đầu quãng đường viên đạn đi là \(s\left( 2 \right) = 24,5.2 - {4,9.2^2} = 29,4m\)

b) khi viên đạt đạt độ cao lớn nhất thì \(v\left( t \right) = 0 \Leftrightarrow 24,5 - 9,8t = 0 \Leftrightarrow t = 2,5\left( s \right)\)

quãng đường viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất là: \(s\left( {2,5} \right) = 2\left( {24,5.2,5 - {{4,9.2,5}^2}} \right) = 61,25m\)

Lời giải

Ta có: \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\)\( \Rightarrow h(t) = \int {\frac{1}{{\sqrt[4]{t}}}} dt = \int {{t^{ - \frac{1}{4}}}} dt = \frac{{{t^{ - \frac{1}{4} + 1}}}}{{^{ - \frac{1}{4} + 1}}} + C = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)

năm đầu tiên cây cao 1m nên \(h(1) = 1,5 \Leftrightarrow 1,5 = \frac{4}{3}\sqrt[4]{1} + C \Rightarrow C = \frac{1}{6}\)

\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6}\)

cây cao được 3m nên \(h(t) = 3 \Leftrightarrow \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6} = 3 \Leftrightarrow \sqrt[4]{{{t^3}}} = \frac{{17}}{8} \Rightarrow t \approx 2,73\)