Một chiếc ô tô đang chạy với vận tốc 72km/h thì nhìn thấy chướng ngại vật trên đường cách đó 40m, người lái xe hãm phanh khẩn cấp. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = -10t + 20 (m/s), trong đó t (giây). Gọi s(t) là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh.
a) Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là bao nhiêu giây?
b) Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét? Xe ô tô có gặp tai nạn do va chạm với chướng ngại vật không?
c) Nếu người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh khẩn cấp thì xe ô tô có gặp tai nạn do va chạm với chướng ngại vật không?
Một chiếc ô tô đang chạy với vận tốc 72km/h thì nhìn thấy chướng ngại vật trên đường cách đó 40m, người lái xe hãm phanh khẩn cấp. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = -10t + 20 (m/s), trong đó t (giây). Gọi s(t) là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh.

a) Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là bao nhiêu giây?
b) Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét? Xe ô tô có gặp tai nạn do va chạm với chướng ngại vật không?
c) Nếu người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh khẩn cấp thì xe ô tô có gặp tai nạn do va chạm với chướng ngại vật không?
Quảng cáo
Trả lời:

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\[s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 10t + 20} \right)\,} \,dx = - 5{t^2} + 20t + C\]
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 10t + 20 = 0 \Rightarrow t = 2\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 2 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 2 \right) = - {5.2^2} + 20.2 = 20\left( m \right)\)
Do \(40 > 20\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) \[72\;km/h = 20m/s\]
người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[20m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[20 + 20 = 40\left( m \right)\]
Do chướng ngại vật trên đường cách đó \(40m\) xe khi bắt đầu đạp phanh nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Quãng đường viên đạn đi được là: \(s\left( t \right) = \int {\left( {24,5 - 9,8t} \right)} \,dx = 24,5t - 4,9{t^2} + C\)
\( \Rightarrow s\left( t \right) = 24,5t - 4,9{t^2} + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = 24,5t - 4,9{t^2}\)
sau 2 giây đầu quãng đường viên đạn đi là \(s\left( 2 \right) = 24,5.2 - {4,9.2^2} = 29,4m\)
b) khi viên đạt đạt độ cao lớn nhất thì \(v\left( t \right) = 0 \Leftrightarrow 24,5 - 9,8t = 0 \Leftrightarrow t = 2,5\left( s \right)\)
quãng đường viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất là: \(s\left( {2,5} \right) = 2\left( {24,5.2,5 - {{4,9.2,5}^2}} \right) = 61,25m\)
Lời giải
Ta có: \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\)\( \Rightarrow h(t) = \int {\frac{1}{{\sqrt[4]{t}}}} dt = \int {{t^{ - \frac{1}{4}}}} dt = \frac{{{t^{ - \frac{1}{4} + 1}}}}{{^{ - \frac{1}{4} + 1}}} + C = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)
năm đầu tiên cây cao 1m nên \(h(1) = 1,5 \Leftrightarrow 1,5 = \frac{4}{3}\sqrt[4]{1} + C \Rightarrow C = \frac{1}{6}\)
\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6}\)
cây cao được 3m nên \(h(t) = 3 \Leftrightarrow \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6} = 3 \Leftrightarrow \sqrt[4]{{{t^3}}} = \frac{{17}}{8} \Rightarrow t \approx 2,73\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.