Một ca nô đang chạy trên hồ Tây với vận tốc 20m/s thì hết xăng; từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc v(t) = -5t + 20, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc ca nô dừng hẳn đi được bao nhiêu mét?
Quảng cáo
Trả lời:
Đáp số 40 mét
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx = - \frac{{3{t^2}}}{2} + 15t + C\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 3t + 15 = 0 \Rightarrow t = 5\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 5 \right) = - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)
Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]
Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Lời giải
a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\[s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 10t + 20} \right)\,} \,dx = - 5{t^2} + 20t + C\]
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - 5{t^2} + 20t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 10t + 20 = 0 \Rightarrow t = 2\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 2 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 2 \right) = - {5.2^2} + 20.2 = 20\left( m \right)\)
Do \(40 > 20\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) \[72\;km/h = 20m/s\]
người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[20m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[20 + 20 = 40\left( m \right)\]
Do chướng ngại vật trên đường cách đó \(40m\) xe khi bắt đầu đạp phanh nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.