Câu hỏi:

09/08/2025 7 Lưu

Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} - 4x + 1\) và \(F\left( 2 \right) = 2\). Tính \(F\left( 3 \right)\).  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[F\left( x \right) = \int {f\left( x \right)dx = } \int {\left( {3{x^2} - 4x + 1} \right)dx = {x^3} - 2{x^2} + x + C} \]. Mà \(F\left( 2 \right) = 2\) nên suy ra \(C = 0\)

Vậy hàm số \(F\left( x \right) = {x^3} - 2{x^2} + x\). Suy ra \(F\left( 3 \right) = 12\).     

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:

\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx =  - \frac{{3{t^2}}}{2} + 15t + C\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 3t + 15 = 0 \Rightarrow t = 5\).

Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây

b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:

\(s\left( 5 \right) =  - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)

Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.

c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây

Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]

Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.

Lời giải

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:

\[s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 10t + 20} \right)\,} \,dx =  - 5{t^2} + 20t + C\]

\( \Rightarrow s\left( t \right) =  - 5{t^2} + 20t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - 5{t^2} + 20t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 10t + 20 = 0 \Rightarrow t = 2\).

Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 2 giây

b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:

\(s\left( 2 \right) =  - {5.2^2} + 20.2 = 20\left( m \right)\)

Do \(40 > 20\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.

c) \[72\;km/h = 20m/s\]

người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[20m\] trong 1 giây

Tổng quãng đường xe đi được đến khi dừng hẳn là : \[20 + 20 = 40\left( m \right)\]

Do chướng ngại vật trên đường cách đó \(40m\) xe khi bắt đầu đạp phanh nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.