(Trả lời ngắn) 30 bài tập Vectơ và các phép toán vectơ trong không gian (có lời giải)
4.6 0 lượt thi 30 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Trả lời: \(60^\circ \)
Vì \(MN//{A^\prime }{C^\prime }\) nên \(\left( {\overrightarrow {MN} ,\overrightarrow {{A^\prime }B} } \right) = \left( {\overrightarrow {{A^\prime }{C^\prime }} ,\overrightarrow {{A^\prime }B} } \right) = \widehat {{C^\prime }{A^\prime }B}\).
Tam giác \({C^\prime }{A^\prime }{B^\prime }\) là tam giác đều vì \(ABCD.{A^\prime }{B^\prime }{C^\prime }{D^\prime }\) ' là hình lập phương.
Suy ra \(\widehat {{C^\prime }{A^\prime }B} = 60^\circ \).
Vậy \(\left( {\overrightarrow {MN} ,\overrightarrow {{A^\prime }B} } \right) = \overrightarrow {{C^\prime }{A^\prime }B} = 60^\circ \).
Lời giải

Trả lời: \(n = - 0,5\)
Vì \(MN//{A^\prime }{C^\prime }\) nên .
Ta có: \(MN = \frac{{a\sqrt 2 }}{2},{C^\prime }B = a\sqrt 2 \). Suy ra
Vậy \(n = - 0,5\).
Lời giải
a) Trong các vectơ \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AD'} \), hai vectơ \(\overrightarrow {AC} ,\overrightarrow {AD} \) có giá nằm trong mặt phẳng (ABCD)
b) Vì \(ABCD \cdot A'B'C'D'\) là hình lập phương nên \(AD = DC = DD'\)
Tam giác ADD' vuông tại \(D\) nên theo định lý Pythagore ta có:
\(AD' = \sqrt {A{D^2} + D{D^{{\rm{'}}2}}} = AD\sqrt 2 \)
Tam giác ADC vuông tại \(D\) nên theo định lý Pythagore ta có:
\(AC = \sqrt {A{D^2} + D{C^2}} = AD\sqrt 2 \)
Do đó, \(AD' = AC\) hay \(\left| {\overrightarrow {AC} } \right| = \left| {\overrightarrow {AD'} } \right|\). Vậy hai vectơ \(\overrightarrow {AC} ,\overrightarrow {AD'} \) có cùng độ dài.
Lời giải
Vì \(ABC \cdot A'B'C'\) là lăng trụ tam giác đều nên \(AA'B'B\) là hình chữ nhật. Suy ra, \(\overrightarrow {AA'} = \overrightarrow {BB'} \). Do đó: \(\left( {\overrightarrow {AA'} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {BB'} ,\overrightarrow {BC} } \right) = \widehat {B'BC} = {90^ \circ }\) (do \({\rm{B}}{{\rm{B}}^{\rm{'}}}C'{\rm{C}}\) là hình chữ nhật)
Vì AA'B'B là hình chữ nhật nên \(\overrightarrow {AB} = \overrightarrow {A'B'} \).
Do đó, \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right) = \widehat {C'A'B'}\).
Vì tam giác \(A'B'C'\) là tam giác đều nên \(\widehat {C'A'B'} = {60^ \circ }\). Do đó, \(\left( {\overrightarrow {AB} ,\widehat {A'C'}} \right) = {60^ \circ }\).
Lời giải

Giả sử cạnh của hình lập phương ABCD.A'B'C'D' bằng 1. Khi đó, A'C' = B'D' =
Gọi E' là giao điểm của hai đường chéo A'C' và B'D' của hình vuông A'B'C'D'. Khi đó, E' là trung điểm của A'C' và B'D'. Suy ra và E'D' =
Gọi E là trung điểm của CC' . Mà E' là trung điểm của A'C' nên EF là đường trung bình của tam giác A'C'C . Do đó, và E'E =
Áp dụng định lí Pythagore vào vuông tại C' có:
Áp dụng định lí Pythagore vào vuông tại C' có:
Vì nên vuông tại E'. Do đó,
Ta có: (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.