Câu hỏi:

19/08/2025 516 Lưu

Cho hình hộp ABCD.EFGH. Điểm \(M\) là trọng tâm tam giác \(AFH\) (Hình 2.16). Tính độ dài của \(\overrightarrow {EM} \) trong trường hợp \(ABCD\).EFGH là hình hộp đứng có các cạnh \(AB = 5,AD = 6,AE = 10\) và \(\widehat {ABC} = {120^ \circ }\).
Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng định lí côsin trong tam giác \(ABC\), ta có:

      \(A{C^2} = {5^2} + {6^2} - 2 \cdot 5 \cdot 6 \cdot {\rm{cos}}{120^ \circ } = 91\)

Khi \(ABCD\).EFGH là hình hộp đứng thì \(EAC\) là tam giác vuông tại \(A\), do đó:

                                  \(E{C^2} = E{A^2} + A{C^2} = 100 + 91 = 191\)

Suy ra \(EM = \frac{1}{3}\sqrt {191} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(\overrightarrow {OA}  = \vec a,\overrightarrow {OB}  = \vec b,\overrightarrow {OC}  = \vec c\).

Khi đó, \(\left| {\vec a\left|  =  \right|\vec b\left|  =  \right|\vec c} \right| = 1\) và \(\vec a \cdot \vec b = \vec a \cdot \vec c = \vec b \cdot \vec c = 0\).

Ta có: \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {OM}  \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}}\).

Mặt khác, do \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {\vec a + \vec b} \right)\) và \(\overrightarrow {AC}  = \overrightarrow {OC}  - \overrightarrow {OA}  = \vec c - \vec a\) nên \(\overrightarrow {OM}  \cdot \overrightarrow {AC}  = \frac{1}{2}\left( {\vec a + \vec b} \right) \cdot \left( {\vec c - \vec a} \right)\) \( = \frac{1}{2}\left( {\vec a \cdot \vec c - {{\vec a}^2} + \vec b \cdot \vec c - \vec b \cdot \vec a} \right) =  - \frac{1}{2}.\)

Ta lại có: \(\left| {\overrightarrow {OM} \left| { = OM = \frac{{\sqrt 2 }}{2};} \right|\overrightarrow {AC} } \right| = AC = \sqrt 2 \).

Do đó, \({\rm{cos}}\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = \frac{{\frac{{\overrightarrow {OM} }}{{\overrightarrow {AC} }} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {OM} \left|  \cdot  \right|\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 1}}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = \frac{{ - 1}}{2}\).

Vậy \(\left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right) = {120^ \circ }\).

Lời giải

a) \(\vec a \cdot \vec b = \left| {\vec a\left|  \cdot  \right|\vec b} \right| \cdot {\rm{cos}}\left( {\vec a,\vec b} \right) = 1 \cdot 1 \cdot {\rm{cos}}{45^ \circ } = \frac{{\sqrt 2 }}{2}\)
b) \(\left( {\vec a + 3\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right) = {\vec a^2} + \vec a \cdot \vec b - 6{\vec b^2} = 1 + \frac{{\sqrt 2 }}{2} - 6 \cdot 1 =  - 5 + \frac{{\sqrt 2 }}{2}\)
\({(\vec a + \vec b)^2} = {\vec a^2} + 2\vec a \cdot \vec b + {\vec b^2} = 1 + 2 \cdot \frac{{\sqrt 2 }}{2} + 1 = 2 + \sqrt 2 \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP