2 bài tập Biểu thức toạ độ của tổng, hiệu hai vectơ và tích của một số với một vectơ (có lời giải)
38 người thi tuần này 4.6 73 lượt thi 2 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có \(2\vec a = (4; - 2;10);\frac{1}{5}\vec b = \left( {0;\frac{3}{5}; - \frac{3}{5}} \right);3\vec c = (3;12; - 6)\).
Do đó \(\vec d = \left( {4 - 0 + 3; - 2 - \frac{3}{5} + 12;10 - \left( { - \frac{3}{5}} \right) + ( - 6)} \right)\), hay \(\vec d = \left( {7;\frac{{47}}{5};\frac{{23}}{5}} \right)\).
Lời giải
a) Vì \(\vec u = - 2\vec i + 3\vec j + \frac{3}{4}\vec k\) nên \(\vec u = \left( { - 2;3;\frac{3}{4}} \right)\).
b) Vì \(\vec v = \left( {3; - \frac{5}{4};2} \right)\) nên \(\vec v = 3\vec i - \frac{5}{4}\vec j + 2\vec k\).
c) Biểu diễn \(\vec a\) qua các vectơ đơn vị:
\( = 2\vec u + \frac{1}{3}\vec v = 2\left( { - 2\vec i + 3\vec j + \frac{3}{4}\vec k} \right) + \frac{1}{3}\left( {3\vec i - \frac{5}{4}\vec j + 2\vec k} \right) = - 3\vec i + \frac{{67}}{{12}}\vec j + \frac{{13}}{6}\vec k.\)
Vậy: \(\vec a = \left( { - 3;\frac{{67}}{{12}};\frac{{13}}{6}} \right).\)