20 câu Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 2. Phương trình đường thẳng trong không gian có đáp án

49 lượt thi 20 câu hỏi 60 phút

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

I. Nhận biết

Trong hệ tọa độ \[Oxyz\], cho đường thẳng \[d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{z}{1}\]. Đường thẳng \[d\] có một vectơ chỉ phương là

Xem đáp án

Câu 2:

Trong hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {5; - 3;6} \right)\]; \[B\left( {5; - 1; - 5} \right)\]. Tìm một vectơ chỉ phương của đường thẳng \[AB\].

Xem đáp án

Câu 3:

Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 1\\y = - 2 - 2t\\z = 2 - 11t\end{array} \right.\]. Điểm nào sau đây thuộc đường thẳng \[d\]?

Xem đáp án

Câu 4:

Trong hệ tọa độ \[Oxyz\], đường thẳng nào dưới đây đi qua điểm \[A\left( {3; - 3;2} \right)\]?

Xem đáp án

Câu 5:

Trong hệ tọa độ \[Oxyz\], phương trình đường thẳng đi qua hai điểm \[A\left( {1;2;3} \right)\] và \[B\left( {5;4; - 1} \right)\] là

Xem đáp án

Câu 6:

II. Thông hiểu

Trong hệ tọa độ \[Oxyz\], phương trình tham số của đường thẳng đi qua điểm \[A\left( {2;0; - 1} \right)\] và vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] là

Xem đáp án

Câu 11:

Cho đường thẳng \[d:\frac{{x + 1}}{{ - 2}} = \frac{{y - 5}}{2} = \frac{{z - 2}}{1}\] và mặt phẳng \[\left( P \right):\]\[3x - 4y + 14z - 5 = 0\]. Tìm khẳng định đúng?

Xem đáp án

Câu 14:

Trong không gian với hệ tọa độ \[Oxyz\], cho ba điểm \[A\left( {0; - 1;3} \right)\], \[B\left( {1;0;1} \right)\], \[C\left( { - 1;1;2} \right)\]. Viết phương trình đường thẳng \[d\] đi qua điểm \[A\] và song song với \[BC.\]

Xem đáp án

Câu 15:

Phương trình đường thẳng \[\Delta \] đi qua \[A\left( {2;3;0} \right)\] và vuông góc với mặt phẳng \[\left( P \right):x + 3y - z + 5 = 0\] là

Xem đáp án

Câu 16:

III. Vận dụng

Trong không gian \[Oxyz\], cho hai điểm \[A\left( {1;4;2} \right)\] và \[B\left( { - 1;2;4} \right)\]. Viết phương trình đường thẳng \[d\] đi qua trọng tâm tam giác \[OAB\] vuông góc với mặt phẳng \[\left( {OAB} \right).\]

Xem đáp án

Câu 17:

Trong không gian \[Oxyz\], gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( P \right):\]\[x - y + z + 3 = 0\] và \[\left( Q \right):2x + 3y - z - 3 = 0\]. Khi đó phương trình đường thẳng \[\Delta \] là

Xem đáp án

Câu 18:

Trong không gian \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 6}}{1} = \frac{{y - 4}}{{ - 4}} = \frac{{z - 4}}{1}\] và \[{d_2}:\frac{{x - 2}}{1} = \frac{{y - 2}}{2} = \frac{z}{{ - 2}}\]. Viết phương trình đường thẳng \[\Delta \] là đường vuông góc chung của hai đường thẳng \[{d_1}\] và \[{d_2}\].

Xem đáp án

Câu 19:

Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = 3\end{array} \right.\] và mặt phẳng \[\left( \alpha \right):x + y + z - 1 = 0\] và điểm \[A\left( {\frac{2}{3};1;\frac{2}{3}} \right)\]. Viết phương trình đường thẳng \[\Delta \]cắt \[d\] và \[\left( \alpha \right)\] lần lượt tại \[M,N\] sao cho tam giác \[OMN\] nhận \[G\] làm trọng tâm.

Xem đáp án

4.6

10 Đánh giá

50%

40%

0%

0%

0%