3 bài tập Tiệm cận xiên (có lời giải)
37 người thi tuần này 4.6 122 lượt thi 3 câu hỏi 45 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} + 1}}{x} - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 0;\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + 1}}{x} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 0\)
b) Ta có \(MN = |f(x) - x| = \left| {\frac{1}{x}} \right|\)
Có \(\mathop {\lim }\limits_{x \to - \infty } \left| {\frac{1}{x}} \right| = 0;\mathop {\lim }\limits_{x \to + \infty } \left| {\frac{1}{x}} \right| = 0\).
Nhận xét MN tiến dần về 0 khi khi \(x \to + \infty \) hoặc \(x \to - \infty \).
Lời giải
Tập xác định: D = ℝ\{–1}.
Ta có \[\mathop {\lim }\limits_{x \to - \infty } \] [ f (x)−(x −2)] = \[\mathop {\lim }\limits_{x \to - \infty } \]\[\frac{3}{{x + 1}}\]= 0; \[\mathop {\lim }\limits_{x \to + \infty } \] [ f (x)−(x −2)] = \[\mathop {\lim }\limits_{x \to + \infty } \]\[\frac{3}{{x + 1}}\]= 0;
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x − 2.
Lời giải
Tập xác định: D = ℝ\{2}.
Ta có: a = \[\mathop {\lim }\limits_{x \to + \infty } \frac{{f(x)}}{x}\] = \[\mathop {\lim }\limits_{x \to + \infty } \]\[\frac{{{x^2} - 3x + 1}}{{{x^2} - 2x}}\]= 1.
b = \[\mathop {\lim }\limits_{x \to + \infty } \] [ f (x) – ax] = \[\mathop {\lim }\limits_{x \to + \infty } \]\[\left( {\frac{{{x^2} - 3x + 1}}{{x - 2}} - x} \right)\]= \[\mathop {\lim }\limits_{x \to + \infty } \]\[\frac{{ - x + 1}}{{x - 2}}\]= -1.
Ta cũng có \[\mathop {\lim }\limits_{x \to - \infty } \frac{{f(x)}}{x}\] = 1; \[\mathop {\lim }\limits_{x \to - \infty } \] [ f (x) – ax] = -1.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x – 1.