6 bài tập Tích của một số với một vectơ (có lời giải)
41 người thi tuần này 4.6 130 lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Theo quy tắc hình hộp ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {A{A^\prime }} = \overrightarrow {A{C^\prime }} \).
\({\rm{b}})\) Vì \(A{A^\prime }//C{C^\prime }\) và \(A{A^\prime } = C{C^\prime }\) (vì cùng song song và bằng \(B{B^\prime }\) )
Nên \(A{A^\prime }{C^\prime }C\) là hình bình hành.
Mà \(A{C^\prime }\) và \({{\rm{A}}^\prime }C\) cắt nhau tại \({\rm{O}}\) nên \({\rm{O}}\) là trung điếm của \({\rm{AC}}\) '.
Suy ra \(AO = \frac{1}{2}A{C^\prime }\) mà \(\overrightarrow {AO} \) và \(\overrightarrow {A{C^\prime }} \) cùng hướng nên \(\overrightarrow {AO} = \frac{1}{2}\overrightarrow {A{C^\prime }} \) hay \(\overrightarrow {A{C^\prime }} = 2\overrightarrow {AO} \).
Lời giải
a) Ta có: \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} ,\overrightarrow {MN} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \).
Do đó \(2\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {AB} + \overrightarrow {DC} + \overrightarrow {BN} + \overrightarrow {CN} \).
Vì \(M\) là trung điểm của đoạn thẳng AD nên \(\overrightarrow {MA} + \overrightarrow {MD} = \vec 0\).
Vì \(N\) là trung diểm của đoạn thẳng BC nên \(\overrightarrow {BN} + \overrightarrow {CN} = \vec 0\).
Do đó \(\overrightarrow {MN} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {DC} )\).
b) Ta có: \(\overrightarrow {AB} = \overrightarrow {AG} + \overrightarrow {GB} ,\overrightarrow {AC} = \overrightarrow {AG} + \overrightarrow {GC} ,\overrightarrow {AD} = \overrightarrow {AG} + \overrightarrow {GD} \).
Suy ra \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \).
Vì \(G\) là trọng tâm của tam giác BCD nên \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).
Do đó \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \).
Lời giải

Vì \({\rm{M}}\) là trung diếm của \({\rm{BB}}\) nên \(\overrightarrow {BM} = \frac{1}{2}\overrightarrow {B{B^\prime }} \).
Do \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) là lăng trụ nên \(\overrightarrow {B{B^\prime }} = \overrightarrow {C{C^\prime }} \).
Có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AC} + \overrightarrow {CB} + \frac{1}{2}\overrightarrow {B{B^\prime }} = \overrightarrow {CB} - \overrightarrow {CA} + \frac{1}{2}\overrightarrow {B{B^\prime }} = \vec b - \vec a + \frac{1}{2}\vec c\).
Lời giải
Lời giải

Vì \({\rm{I}}\) là trọng tâm của \({\rm{DABC}}\) nên \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \vec 0\)
\( \Leftrightarrow \overrightarrow {SA} - \overrightarrow {SI} + \overrightarrow {SB} - \overrightarrow {SI} + \overrightarrow {SC} - \overrightarrow {SI} = \vec 0 \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SI} (1).\)Tương tự, \(\overrightarrow {SA} + \overrightarrow {SD} + \overrightarrow {SC} = 3\overrightarrow {SJ} \) (2).
Cộng từng vế (1) và (2), ta có: \(2\overrightarrow {SA} + \overrightarrow {SB} + 2\overrightarrow {SC} + \overrightarrow {SD} = 3(SI + \overrightarrow {SJ} )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.