(Trả lời ngắn) 22 bài tập Ứng dụng hình học của tích phân (có lời giải)
29 người thi tuần này 4.6 79 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\(\frac{4}{{15}}\)
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} + x - 1\), \(y = {x^4} + x - 1\), \(x = - 1,x = 1\) là
\(S = \int\limits_{ - 1}^1 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x = \int\limits_{ - 1}^0 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x + \int\limits_0^1 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x\)
\( = \left| {\int\limits_{ - 1}^0 {\left( {{x^2} - {x^4}} \right){\rm{d}}} x} \right| + \left| {\int\limits_0^1 {\left( {{x^2} - {x^4}} \right){\rm{d}}} x} \right| = \left| {\left( {\frac{{{x^3}}}{3} - \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}0\\ - 1\end{array} \right.} \right| + \left| {\left( {\frac{{{x^3}}}{3} - \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}1\\0\end{array} \right.} \right| = \frac{2}{{15}} + \frac{2}{{15}} = \frac{4}{{15}}\).
Lời giải
\[t = 3\]
Ta có: \[S\left( t \right) = \int\limits_1^t {\left| {2x + 1} \right|} {\rm{ d}}x = \int\limits_1^t {\left( {2x + 1} \right)} {\rm{ d}}x\].
Suy ra \[S\left( t \right) = \left. {\left( {{x^2} + x} \right)} \right|_1^t = {t^2} + t - 2\].
Do đó \[S\left( t \right) = 10 \Leftrightarrow {t^2} + t - 2 = 10 \Leftrightarrow {t^2} + t - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 4{\rm{ }}\left( L \right)\end{array} \right.\].
Vậy \[t = 3\].
Lời giải
\(m = 2\)
Vì \(m > 0\) nên \(2x + 3 > 0,\,\forall x \in \left[ {0\,;\,m} \right]\).
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\,x = 0\,,\,x = m\) là:
\(S = \int\limits_0^m {\left( {2x + 3} \right).{\rm{d}}x} = \left. {\left( {{x^2} + 3x} \right)} \right|_0^m = {m^2} + 3m\).
Theo giả thiết ta có:
\(S = 10 \Leftrightarrow {m^2} + 3m = 10 \Leftrightarrow {m^2} + 3m - 10 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = - 5\,\end{array} \right. \Leftrightarrow m = 2\,\,\,\left( {{\rm{do}}\,\,\,m > 0} \right)\).
Lời giải
\(\frac{{{S_1}}}{{{S_2}}} = 2\)
Ta có diện tích hình vuông \(OABC\) là \(16\) và bằng \({S_1}\, + \,{S_2}\).
\({S_2} = \,\,\int\limits_0^4 {\frac{1}{4}{x^2}{\rm{d}}x} \,\, = \,\left. {\,\frac{{{x^3}}}{{12}}} \right|_0^4\, = \,\,\frac{{16}}{3}\)\[\,\, \Rightarrow \,\,\,\,\frac{{{S_1}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - {S_2}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - \frac{{16}}{3}}}{{\frac{{16}}{3}}}\,\,\, = \,\,\,2\]
Lời giải
\[k = \ln 3\]
Diện tích hình thang cong \[\left( H \right)\] giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = \ln 4\] là
\[S = \int\limits_0^{\ln 4} {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^{\ln 4} = \]\[{{\rm{e}}^{\ln 4}} - {{\rm{e}}^0} = 4 - 1 = 3\](đvdt).
Ta có \[S = {S_1} + {S_2} = {S_1} + \frac{1}{2}{S_1} = \frac{3}{2}{S_1}\]. Suy ra \[{S_1} = \frac{{2S}}{3} = \frac{{2.3}}{3} = 2\] (đvdt).
Vì \[{S_1}\] là phần diện tích được giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = k\] nên
\[2 = {S_1} = \int\limits_0^k {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^k = \]\[{{\rm{e}}^k} - {{\rm{e}}^0} = {{\rm{e}}^k} - 1\].
Do đó \[{{\rm{e}}^k} = 3 \Leftrightarrow k = \ln 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.