4 bài tập Vectơ trong không gian (có lời giải)
42 người thi tuần này 4.6 258 lượt thi 4 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Ta có ba vectơ \[\overrightarrow {BA} ,\overrightarrow {BC} ,\overrightarrow {BD} \] có điểm đầu là B và điểm cuối là các đỉnh còn lại của hình tứ diện.
Lời giải
Lời giải

a) Các vectơ có điếm đầu là \(S\) và điểm cuối là các đỉnh của đa giác đáy là \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \).
b) Vì \({\rm{S}}.{\rm{ABCD}}\) là hình chóp tứ giác đều nên \(SA = SB = SC = SD\).
Vậy các vectơ \(\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} ,\overrightarrow {AS} ,\overrightarrow {BS} ,\overrightarrow {CS} ,\overrightarrow {DS} \) có độ dài bằng độ dài của vectơ \(\overrightarrow {SA} \).
c) Vì ABCD là hình vuông nên \(AD = BC\).
Mà \(\overrightarrow {CB} \) và \(\overrightarrow {AD} \) ngược hướng nhau nên \(\overrightarrow {AD} \) là vectơ đối của vectơ \(\overrightarrow {CB} \).
Hai vectơ \(\overrightarrow {CB} \) và \(\overrightarrow {BC} \) có độ dài bằng nhau nhưng ngược hướng nên \(\overrightarrow {BC} \) là vectơ đối của vectơ \(\overrightarrow {CB} \).
Lời giải
|
a) Do AC // A’C’ và M \[ \in \] AC nên:
|
|
• Vectơ khác \[\vec 0\] và cùng phương với \[\overrightarrow {AM} \] là vectơ có giá AC hoặc A’C’. Đó là các vectơ \[\overrightarrow {AC} \];\[\overrightarrow {CA} \];\[\overrightarrow {A'C'} \];\[\overrightarrow {C'A'} \] |
|
• Trong những vectơ khác \[\vec 0\] và cùng hướng với \[\overrightarrow {AM} \], có hai vectơ \[\overrightarrow {AC} \]; \[\overrightarrow {A'C'} \] cùng hướng với \[\overrightarrow {AM} \]; |
|
• Các vectơ đối của \[\overrightarrow {AC} \] là \[\overrightarrow {CA} \], \[\overrightarrow {C'A'} \]; |
|
• Các vectơ bằng \[\overrightarrow {MM'} \] là \[\overrightarrow {AA'} ;\overrightarrow {BB'} ;\overrightarrow {CC'} \] (các vectơ này cùng hướng và cùng độ dài với \[\overrightarrow {MM'} \]). |
|
d) Từ giả thiết, ta suy ra tam giác AMB vuông tại M. |
|
• Từ đó ta có: \[BM = BA.\cos \widehat {ABM} = 5.\cos {15^o} \approx 4,83{\rm{ (cm)}}\] |
|
• Vậy độ dài của \[\overrightarrow {BM} \] là \[\left| {\overrightarrow {BM} } \right| \approx 4,83{\rm{ (cm)}}\] |


