4 bài tập Vectơ trong không gian (có lời giải)
55 người thi tuần này 4.6 76 lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có ba vectơ \[\overrightarrow {BA} ,\overrightarrow {BC} ,\overrightarrow {BD} \] có điểm đầu là B và điểm cuối là các đỉnh còn lại của hình tứ diện.
Lời giải
Lời giải

a) Các vectơ có điếm đầu là \(S\) và điểm cuối là các đỉnh của đa giác đáy là \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \).
b) Vì \({\rm{S}}.{\rm{ABCD}}\) là hình chóp tứ giác đều nên \(SA = SB = SC = SD\).
Vậy các vectơ \(\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} ,\overrightarrow {AS} ,\overrightarrow {BS} ,\overrightarrow {CS} ,\overrightarrow {DS} \) có độ dài bằng độ dài của vectơ \(\overrightarrow {SA} \).
c) Vì ABCD là hình vuông nên \(AD = BC\).
Mà \(\overrightarrow {CB} \) và \(\overrightarrow {AD} \) ngược hướng nhau nên \(\overrightarrow {AD} \) là vectơ đối của vectơ \(\overrightarrow {CB} \).
Hai vectơ \(\overrightarrow {CB} \) và \(\overrightarrow {BC} \) có độ dài bằng nhau nhưng ngược hướng nên \(\overrightarrow {BC} \) là vectơ đối của vectơ \(\overrightarrow {CB} \).
Lời giải
a) Do AC // A’C’ và M \[ \in \] AC nên:
|
• Vectơ khác \[\vec 0\] và cùng phương với \[\overrightarrow {AM} \] là vectơ có giá AC hoặc A’C’. Đó là các vectơ \[\overrightarrow {AC} \];\[\overrightarrow {CA} \];\[\overrightarrow {A'C'} \];\[\overrightarrow {C'A'} \] |
• Trong những vectơ khác \[\vec 0\] và cùng hướng với \[\overrightarrow {AM} \], có hai vectơ \[\overrightarrow {AC} \]; \[\overrightarrow {A'C'} \] cùng hướng với \[\overrightarrow {AM} \]; |
• Các vectơ đối của \[\overrightarrow {AC} \] là \[\overrightarrow {CA} \], \[\overrightarrow {C'A'} \]; |
• Các vectơ bằng \[\overrightarrow {MM'} \] là \[\overrightarrow {AA'} ;\overrightarrow {BB'} ;\overrightarrow {CC'} \] (các vectơ này cùng hướng và cùng độ dài với \[\overrightarrow {MM'} \]). |
d) Từ giả thiết, ta suy ra tam giác AMB vuông tại M. |
• Từ đó ta có: \[BM = BA.\cos \widehat {ABM} = 5.\cos {15^o} \approx 4,83{\rm{ (cm)}}\] |
• Vậy độ dài của \[\overrightarrow {BM} \] là \[\left| {\overrightarrow {BM} } \right| \approx 4,83{\rm{ (cm)}}\] |