10 bài tập Góc giữa hai đường thẳng có lời giải
45 người thi tuần này 4.6 45 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Có \(\overrightarrow {{u_1}} = \left( {2; - 2;1} \right),\overrightarrow {{u_2}} = \left( {1;3;4} \right)\)lần lượt là vectơ chỉ phương của d1; d2.
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {2.1 + \left( { - 2} \right).3 + 1.4} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2} + {3^2} + {4^2}} }} = 0\).
Suy ra (d1, d2) = 90°.
Lời giải
Đáp án đúng là: A
Có \(\overrightarrow {{u_1}} = \left( {2;1; - 2} \right),\overrightarrow {{u_2}} = \left( {2; - 1;1} \right)\)lần lượt là vectơ chỉ phương của d; d'.
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {2.2 + 1.\left( { - 1} \right) + \left( { - 2} \right).1} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{{3\sqrt 6 }}\).
Lời giải
Đáp án đúng là: A
Có \(\overrightarrow {{u_1}} = \left( { - 1;1; - 2} \right),\overrightarrow {{u_2}} = \left( { - 1;1;1} \right)\)lần lượt là vectơ chỉ phương của d1; d2.
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {\left( { - 1} \right).\left( { - 1} \right) + 1.1 + \left( { - 2} \right).1} \right|}}{{\sqrt 3 .\sqrt 6 }} = 0\).
Suy ra (d1, d2) = 90°.
Lời giải
Đáp án đúng là: A
Có \(\overrightarrow {{u_1}} = \left( { - 2;3;2} \right),\overrightarrow {{u_2}} = \left( {1; - 2;4} \right)\)lần lượt là vectơ chỉ phương của 1; 2.
Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 2.1 + 3.\left( { - 2} \right) + 2.4} \right|}}{{\sqrt {17} .\sqrt {21} }} = 0\).
Suy ra (1, 2) = 90°.
Lời giải
Đáp án đúng là: B
Ta có \(\overrightarrow u = \left( {2;1;1} \right)\) là vectơ chỉ phương của d, \(\overrightarrow i = \left( {1;0;0} \right)\) là vectơ chỉ phương của trục Ox.
\(\cos \left( {d,Ox} \right) = \frac{{\left| {2 + 0 + 0} \right|}}{{\sqrt {{2^2} + {1^2} + {1^2}} .\sqrt {{1^2} + {0^2} + {0^2}} }} = \frac{2}{{\sqrt 6 }} = \frac{{\sqrt 6 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.