(Trả lời ngắn) 17 bài tập Phương trình mặt cầu (có lời giải)
39 người thi tuần này 4.6 86 lượt thi 17 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án: \(\left( {1\,;\, - 2\,;\,3} \right)\)
Mặt cầu \(\left( S \right):\,{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm là \(I\left( {a\,;\,b\,;\,c} \right)\).
Suy ra, mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) có tâm là \(I\left( {1\,;\, - 2\,;\,3} \right)\).
Lời giải
Đáp án: \(m < 1\) hoặc \(m > 2\).
Điều kiện để phương trình \[{x^2} + {y^2} + {z^2} - 2\left( {m + 2} \right)x + 4my + 19m - 6 = 0\] là phương trình mặt cầu là: \[{\left( {m + 2} \right)^2} + 4{m^2} - 19m + 6 > 0 \Leftrightarrow 5{m^2} - 15m + 10 > 0\]\( \Leftrightarrow m < 1\) hoặc \(m > 2\).
Lời giải
Đáp án: \(\frac{{\sqrt {14} }}{2}\)
Gọi \(\left( S \right)\) là mặt cầu ngoại tiếp tứ diện \(OABC\).
Phương trình mặt cầu \(\left( S \right)\) có dạng: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Vì \(O\), \(A\), \(B\), \(C\) thuộc \(\left( S \right)\) nên ta có:
\(\left\{ \begin{array}{l}d = 0\\1 + 2a + d = 0\\4 - 4c + d = 0\\9 + 6b + d = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{2}\\b = - \frac{3}{2}\\c = 1\\d = 0\end{array} \right.\).
Vậy bán kính mặt cầu \(\left( S \right)\) là: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)\( = \sqrt {\frac{1}{4} + \frac{9}{4} + 1} \)\( = \frac{{\sqrt {14} }}{2}\).
Lời giải
Đáp án: \(P = 9\)
Vì mặt cầu tâm \(I\) tiếp xúc với các mặt phẳng tọa độ nên \(d\left( {I,\,\left( {Oyz} \right)} \right) = d\left( {I,\,\left( {Ozx} \right)} \right) = d\left( {I,\,\left( {Oxy} \right)} \right)\) \( \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right|\) \( \Leftrightarrow \left[ \begin{array}{l}a = b = c\\a = b = - c\\a = - b = c\\a = - b = - c\end{array} \right.\)
Nhận thấy chỉ có trường hợp \(a = - b = c\) thì phương trình \(AI = d\left( {I,\,\left( {Oxy} \right)} \right)\) có nghiệm, các trường hợp còn lại vô nghiệm.
Thật vậy:
Với \(a = - b = c\) thì \(I\left( {a;\, - a;\,a} \right)\)
\(AI = d\left( {I,\,\left( {Oyx} \right)} \right)\)\( \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {a - 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2}\) \( \Leftrightarrow {a^2} - 6a + 9 = 0\) \( \Leftrightarrow a = 3\)
Khi đó \(P = a - b + c = 9\).
Lời giải
Đáp án: \(m = \sqrt 3 \)
Mặt cầu \(\left( S \right)\): \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = {m^2} + 1\) có tâm \(I\left( {3\,;\,0\,;\,2} \right)\), bán kính \(R = \sqrt {{m^2} + 1} \).
\(\left( S \right)\) tiếp xúc với \(\left( {Oxy} \right)\)\( \Leftrightarrow d\left( {I,\left( {Oxy} \right)} \right) = R\)
\( \Leftrightarrow 2 = \sqrt {{m^2} + 1} \)\( \Leftrightarrow {m^2} = 3\)\( \Leftrightarrow m = \sqrt 3 \) (do \(m\) dương).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.