Câu hỏi:

22/08/2025 7 Lưu

Từ mặt nước trong một bể nước, tại ba vị tri đôi một cách nhau 2 m , người ta lần lượt thả dầy dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị tri đó lần lượt có độ dài \(4\;{\rm{m}};4,4\;{\rm{m}};4,8\;{\rm{m}}\). Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Từ mặt nước trong một bể nước, tại ba vị tri đôi một cách nhau 2 m , người ta lần lượt thả dầy dọi để quả dọi chạm đáy bể (ảnh 1)

Gọi 3 điểm ở trên mặt nước lần lượt là \({\rm{A}},{\rm{B}},{\rm{C}}\) và ba điểm tương ứng ở đáy bể là \({A^\prime },{B^\prime },{C^\prime }\) sao cho \(A{A^\prime } = 4\;{\rm{m}},{B^\prime } = 4,4\;{\rm{m}},{C^\prime } = 4,8\;{\rm{m}}\).

Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC .

Ta có A(0; \(1;0),B(\sqrt 3 ;0;0),{\rm{C}}(0; - 1;0),{{\rm{A}}^\prime }(0;1;4),{B^\prime }(\sqrt 3 ;0;4,4),{{\rm{C}}^\prime }(0; - 1\); 4,8 .

Ta có \(\overrightarrow {{A^\prime }{B^\prime }}  = (\sqrt 3 ; - 1;0,4),\overrightarrow {{A^\prime }{C^\prime }}  = (0; - 2;0,8)\)

Có \(\left[ {\overrightarrow {{A^\prime }{B^\prime }} ,\overrightarrow {{A^\prime }{C^\prime }} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\)\( = (0; - 0,8\sqrt 3 ; - 2\sqrt 3 )\)

Mặt phẳng đáy bể là mặt phẳng ( \(\left. {{A^\prime }{B^\prime }{C^\prime }} \right)\) có một vectơ pháp tuyến là \(\vec n = (0; - 0,8\sqrt 3 ; - 2\sqrt 3 )\)

Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng \({\rm{Oxy}}:{\rm{z}} = 0\) có một vectơ pháp tuyến là \(\vec k = (0;0;1)\)

Do đó \(\cos \left( {\left( {{A^\prime }{B^\prime }{C^\prime }} \right),(Oxy)} \right) = \frac{{|0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1|}}{{\sqrt {{0^2} + {{( - 0,8\sqrt 3 )}^2} + {{( - 2\sqrt 3 )}^2}}  \cdot \sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\)

Suy ra A'B'C',(Oxy)21,8°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian là:

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\)

b)

· Ta có: \(IM = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {0 + 3} \right)}^2}}  = 5\)

Vì \(IM = R = 5\) nên điểm \(M\left( {1;2;0} \right)\) nằm trên mặt cầu . Vậy bạn Minh Hiền có thể sử dụng dịch vụ của trạm này.

· Ta có: \(IN = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}}  = \sqrt {34}  > 5\)

Vì \(IN > R\) nên điểm \(N\left( { - 3;1;0} \right)\) nằm ngoài mặt cầu . Vậy bạn Trúc Linh không thể sử dụng dịch vụ của trạm này.

Lời giải

Đáp án: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\)

(Trả lời ngắn) Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S: (x-1)^2 + (y-2)^2 + (z-3)^2 = 25 và hình nón H có đỉnh A(3; 2; -2) và nhận AI làm trục đối xứng với I là tâm mặt cầu (ảnh 1)

Gọi hình chiếu vuông góc của \(I\) trên \(MN\) là \(K\).

Dễ thấy \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = 5\)

Có \(AM.AN = A{I^2} - {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3} \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} - K{N^2}}  = \frac{{\sqrt {213} }}{3}\).

Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1;2;3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}\).

Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP