Từ mặt nước trong một bể nước, tại ba vị tri đôi một cách nhau 2 m , người ta lần lượt thả dầy dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị tri đó lần lượt có độ dài \(4\;{\rm{m}};4,4\;{\rm{m}};4,8\;{\rm{m}}\). Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Từ mặt nước trong một bể nước, tại ba vị tri đôi một cách nhau 2 m , người ta lần lượt thả dầy dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị tri đó lần lượt có độ dài \(4\;{\rm{m}};4,4\;{\rm{m}};4,8\;{\rm{m}}\). Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Quảng cáo
Trả lời:


Gọi 3 điểm ở trên mặt nước lần lượt là \({\rm{A}},{\rm{B}},{\rm{C}}\) và ba điểm tương ứng ở đáy bể là \({A^\prime },{B^\prime },{C^\prime }\) sao cho \(A{A^\prime } = 4\;{\rm{m}},{B^\prime } = 4,4\;{\rm{m}},{C^\prime } = 4,8\;{\rm{m}}\).
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC .
Ta có A(0; \(1;0),B(\sqrt 3 ;0;0),{\rm{C}}(0; - 1;0),{{\rm{A}}^\prime }(0;1;4),{B^\prime }(\sqrt 3 ;0;4,4),{{\rm{C}}^\prime }(0; - 1\); 4,8 .
Ta có \(\overrightarrow {{A^\prime }{B^\prime }} = (\sqrt 3 ; - 1;0,4),\overrightarrow {{A^\prime }{C^\prime }} = (0; - 2;0,8)\)
Có \(\left[ {\overrightarrow {{A^\prime }{B^\prime }} ,\overrightarrow {{A^\prime }{C^\prime }} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\)\( = (0; - 0,8\sqrt 3 ; - 2\sqrt 3 )\)
Mặt phẳng đáy bể là mặt phẳng ( \(\left. {{A^\prime }{B^\prime }{C^\prime }} \right)\) có một vectơ pháp tuyến là \(\vec n = (0; - 0,8\sqrt 3 ; - 2\sqrt 3 )\)
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng \({\rm{Oxy}}:{\rm{z}} = 0\) có một vectơ pháp tuyến là \(\vec k = (0;0;1)\)
Do đó \(\cos \left( {\left( {{A^\prime }{B^\prime }{C^\prime }} \right),(Oxy)} \right) = \frac{{|0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1|}}{{\sqrt {{0^2} + {{( - 0,8\sqrt 3 )}^2} + {{( - 2\sqrt 3 )}^2}} \cdot \sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\)
Suy raHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian là:
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\)
b)
· Ta có: \(IM = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {0 + 3} \right)}^2}} = 5\)
Vì \(IM = R = 5\) nên điểm \(M\left( {1;2;0} \right)\) nằm trên mặt cầu . Vậy bạn Minh Hiền có thể sử dụng dịch vụ của trạm này.
· Ta có: \(IN = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = \sqrt {34} > 5\)
Vì \(IN > R\) nên điểm \(N\left( { - 3;1;0} \right)\) nằm ngoài mặt cầu . Vậy bạn Trúc Linh không thể sử dụng dịch vụ của trạm này.
Lời giải
Đáp án: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\)

Gọi hình chiếu vuông góc của \(I\) trên \(MN\) là \(K\).
Dễ thấy \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = 5\)
Có \(AM.AN = A{I^2} - {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3} \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} - K{N^2}} = \frac{{\sqrt {213} }}{3}\).
Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1;2;3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.