Trong không gian hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét) một trạm phát sóng điện thoại của nhà mạng Vinaphone được đặt ở vị trí \(I\left( {1; - 2; - 3} \right)\) và được thiết kế bán kính phủ sóng là \(5000m\).
a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian.
b) Nhà bạn Minh Hiền và bạn Trúc Linh có vị trí tọa độ lần lượt là \(M\left( {1;2;0} \right)\) và \(N\left( { - 3;1;0} \right)\). Hỏi Minh Hiền và Trúc Linh dùng điện thoại tại nhà thì có thể sử dụng dịch vụ của trạm này không?
Trong không gian hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét) một trạm phát sóng điện thoại của nhà mạng Vinaphone được đặt ở vị trí \(I\left( {1; - 2; - 3} \right)\) và được thiết kế bán kính phủ sóng là \(5000m\).

a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian.
b) Nhà bạn Minh Hiền và bạn Trúc Linh có vị trí tọa độ lần lượt là \(M\left( {1;2;0} \right)\) và \(N\left( { - 3;1;0} \right)\). Hỏi Minh Hiền và Trúc Linh dùng điện thoại tại nhà thì có thể sử dụng dịch vụ của trạm này không?
Quảng cáo
Trả lời:

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian là:
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\)
b)
· Ta có: \(IM = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {0 + 3} \right)}^2}} = 5\)
Vì \(IM = R = 5\) nên điểm \(M\left( {1;2;0} \right)\) nằm trên mặt cầu . Vậy bạn Minh Hiền có thể sử dụng dịch vụ của trạm này.
· Ta có: \(IN = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = \sqrt {34} > 5\)
Vì \(IN > R\) nên điểm \(N\left( { - 3;1;0} \right)\) nằm ngoài mặt cầu . Vậy bạn Trúc Linh không thể sử dụng dịch vụ của trạm này.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\)

Gọi hình chiếu vuông góc của \(I\) trên \(MN\) là \(K\).
Dễ thấy \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = 5\)
Có \(AM.AN = A{I^2} - {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3} \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} - K{N^2}} = \frac{{\sqrt {213} }}{3}\).
Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1;2;3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\).Lời giải
Đáp án: \(m = \sqrt 3 \)
Mặt cầu \(\left( S \right)\): \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = {m^2} + 1\) có tâm \(I\left( {3\,;\,0\,;\,2} \right)\), bán kính \(R = \sqrt {{m^2} + 1} \).
\(\left( S \right)\) tiếp xúc với \(\left( {Oxy} \right)\)\( \Leftrightarrow d\left( {I,\left( {Oxy} \right)} \right) = R\)
\( \Leftrightarrow 2 = \sqrt {{m^2} + 1} \)\( \Leftrightarrow {m^2} = 3\)\( \Leftrightarrow m = \sqrt 3 \) (do \(m\) dương).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.