Câu hỏi:

22/08/2025 7 Lưu

Trong không gian hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét) một trạm phát sóng rađa của Nga được đặt trên bán đảo Crimea ở vị trí \(I\left( { - 2;1; - 1} \right)\) và được thiết kế phát hiện máy bay của địch ở khoảng cách tối đa \(500km\).

(Trả lời ngắn) Trong không gian hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét) một trạm phát sóng rađa của Nga được đặt trên bán đảo Crimea (ảnh 1)

a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của rađa trong không gian.

b) Hai chiếc máy bay do thám của Mỹ và Anh đang bay ở vị trí có tọa độ lần lượt là \(M\left( { - 200;100; - 250} \right)\) và \(N\left( {350; - 100;300} \right)\). Hỏi rađa của Nga có thể phát hiện ra hai chiếc máy bay do thám của Mỹ và Anh không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của rađa trong không gian là:

\({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 250000\)

b)

· Ta có: \(IM = \sqrt {{{\left( { - 200 + 2} \right)}^2} + {{\left( {100 - 1} \right)}^2} + {{\left( { - 250 + 1} \right)}^2}}  \approx 335,6 < 500\)

Vì \(IM < R\) nên điểm \(M\) nằm trong mặt cầu . Vậy chiếc máy bay do thám của Mỹ có thể bị phát hiện bởi trạm rađa này.

· Ta có: \(IN = \sqrt {{{\left( {350 + 2} \right)}^2} + {{\left( { - 100 - 1} \right)}^2} + {{\left( {300 + 1} \right)}^2}}  \approx 474 < 500\)

Vì \(IN < R\) nên điểm \(N\) nằm trong mặt cầu . Vậy chiếc máy bay do thám của Anh có thể bị phát hiện bởi trạm rađa này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian là:

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\)

b)

· Ta có: \(IM = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {0 + 3} \right)}^2}}  = 5\)

Vì \(IM = R = 5\) nên điểm \(M\left( {1;2;0} \right)\) nằm trên mặt cầu . Vậy bạn Minh Hiền có thể sử dụng dịch vụ của trạm này.

· Ta có: \(IN = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}}  = \sqrt {34}  > 5\)

Vì \(IN > R\) nên điểm \(N\left( { - 3;1;0} \right)\) nằm ngoài mặt cầu . Vậy bạn Trúc Linh không thể sử dụng dịch vụ của trạm này.

Lời giải

Đáp án: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\)

(Trả lời ngắn) Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S: (x-1)^2 + (y-2)^2 + (z-3)^2 = 25 và hình nón H có đỉnh A(3; 2; -2) và nhận AI làm trục đối xứng với I là tâm mặt cầu (ảnh 1)

Gọi hình chiếu vuông góc của \(I\) trên \(MN\) là \(K\).

Dễ thấy \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = 5\)

Có \(AM.AN = A{I^2} - {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3} \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} - K{N^2}}  = \frac{{\sqrt {213} }}{3}\).

Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1;2;3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}\).

Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP