Trong không gian hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét) một trạm phát sóng rađa của Nga được đặt trên bán đảo Crimea ở vị trí \(I\left( { - 2;1; - 1} \right)\) và được thiết kế phát hiện máy bay của địch ở khoảng cách tối đa \(500km\).

a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của rađa trong không gian.
b) Hai chiếc máy bay do thám của Mỹ và Anh đang bay ở vị trí có tọa độ lần lượt là \(M\left( { - 200;100; - 250} \right)\) và \(N\left( {350; - 100;300} \right)\). Hỏi rađa của Nga có thể phát hiện ra hai chiếc máy bay do thám của Mỹ và Anh không?
Quảng cáo
Trả lời:

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của rađa trong không gian là:
\({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 250000\)
b)
· Ta có: \(IM = \sqrt {{{\left( { - 200 + 2} \right)}^2} + {{\left( {100 - 1} \right)}^2} + {{\left( { - 250 + 1} \right)}^2}} \approx 335,6 < 500\)
Vì \(IM < R\) nên điểm \(M\) nằm trong mặt cầu . Vậy chiếc máy bay do thám của Mỹ có thể bị phát hiện bởi trạm rađa này.
· Ta có: \(IN = \sqrt {{{\left( {350 + 2} \right)}^2} + {{\left( { - 100 - 1} \right)}^2} + {{\left( {300 + 1} \right)}^2}} \approx 474 < 500\)
Vì \(IN < R\) nên điểm \(N\) nằm trong mặt cầu . Vậy chiếc máy bay do thám của Anh có thể bị phát hiện bởi trạm rađa này.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phủ sóng trong không gian là:
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\)
b)
· Ta có: \(IM = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {0 + 3} \right)}^2}} = 5\)
Vì \(IM = R = 5\) nên điểm \(M\left( {1;2;0} \right)\) nằm trên mặt cầu . Vậy bạn Minh Hiền có thể sử dụng dịch vụ của trạm này.
· Ta có: \(IN = \sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = \sqrt {34} > 5\)
Vì \(IN > R\) nên điểm \(N\left( { - 3;1;0} \right)\) nằm ngoài mặt cầu . Vậy bạn Trúc Linh không thể sử dụng dịch vụ của trạm này.
Lời giải
Đáp án: \(m = \sqrt 3 \)
Mặt cầu \(\left( S \right)\): \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = {m^2} + 1\) có tâm \(I\left( {3\,;\,0\,;\,2} \right)\), bán kính \(R = \sqrt {{m^2} + 1} \).
\(\left( S \right)\) tiếp xúc với \(\left( {Oxy} \right)\)\( \Leftrightarrow d\left( {I,\left( {Oxy} \right)} \right) = R\)
\( \Leftrightarrow 2 = \sqrt {{m^2} + 1} \)\( \Leftrightarrow {m^2} = 3\)\( \Leftrightarrow m = \sqrt 3 \) (do \(m\) dương).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.