10 bài tập Viết phương trình mặt cầu đi qua 4 điểm không đồng phẳng có lời giải
30 người thi tuần này 4.6 77 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. (x – 1)2 + (y − 1)2 + (z – 2)2 = 4;
B. (x + 1)2 + (y + 1)2 + (z + 2)2 = 4;
C. (x − 1)2 + (y − 1)2 + (z − 2)2 = 2;
D. (x + 1)2 + (y + 1)2 + (z + 2)2 = 4.
Lời giải
Đáp án đúng là: D
A. Phương trình mặt cầu ngoại tiếp tứ diện ABCD có dạng:
B. x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0).
C. Vì A, B, C, D (S) nên ta có hệ phương trình
\(\left\{ \begin{array}{l}2a + 2b - d = 2\\6a + 2b + 4c - d = 14\\ - 2a + 2b + 4c - d = 6\\2a - 2b + 4c - d = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = 2\\d = 2\end{array} \right.\).
Vậy (x − 1)2 + (y − 1)2 + (z − 2)2 = 4.
Câu 2
A. \({x^2} + {y^2} + {z^2} + \frac{1}{7}x + \frac{{15}}{7}y - \frac{{37}}{7}z = 0\);
B. \({x^2} + {y^2} + {z^2} + \frac{1}{{14}}x + \frac{{15}}{{14}}y - \frac{{37}}{{14}}z = 0\);
C. \({x^2} + {y^2} + {z^2} + \frac{1}{7}x - \frac{{15}}{7}y + \frac{{37}}{7}z = 0\);
D. \({x^2} + {y^2} + {z^2} - \frac{1}{{14}}x - \frac{{15}}{{14}}y + \frac{{37}}{{14}}z = 0\).
Lời giải
Đáp án đúng là: A
D. Phương trình mặt cầu ngoại tiếp tứ diện OABC có dạng:
A. x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0).
B. Vì O, A, B, C (S) nên ta có hệ phương trình
\(\left\{ \begin{array}{l}d = 0\\4a - 2b - 6c + d = - 14\\ - 2a + 2b + d = - 2\\ - 4a - 2c + d = - 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{14}}\\b = - \frac{{15}}{{14}}\\c = \frac{{37}}{{14}}\\d = 0\end{array} \right.\).
Vậy phương trình mặt cầu cần lập: \({x^2} + {y^2} + {z^2} + \frac{1}{7}x + \frac{{15}}{7}y - \frac{{37}}{7}z = 0\).
Câu 3
A. x2 + y2 + z2 – 2x + 4y – 4z = 0;
B. (x − 1)2 + (y − 2)2 + (z − 2)2 = 9;
C. (x − 2)2 + (y − 4)2 + (z − 4)2 = 20;
D. x2 + y2 + z2 + 2x – 4y + 4z = 9.
Lời giải
Đáp án đúng là: B
C. Phương trình mặt cầu ngoại tiếp tứ diện OABC có dạng:
D. x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0).
A. Vì O, A, B, C (S) nên ta có hệ phương trình
\(\left\{ \begin{array}{l} - 4a + d = - 4\\ - 8b + d = - 16\\ - 8c + d = - 16\\d = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 2\\d = 0\end{array} \right.\).
Bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = 3\).
Do đó (x − 1)2 + (y − 2)2 + (z − 2)2 = 9.
Câu 4
A. x2 + y2 + z2 + 4x − 2y + 6z – 3 = 0;
B. 2x2 + y2 + z2 − 4x + 2y − 6z – 3 = 0;
C. x2 + y2 + z2 − 4x + 2y − 6z – 3 = 0;
D. x2 + y2 + z2 − 4x + 2y − 6z + 3 = 0.
Lời giải
Đáp án đúng là: C
B. Phương trình mặt cầu ngoại tiếp tứ diện ABCD có dạng:
C. x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0).
D. Vì A, B, C, D (S) nên ta có hệ phương trình
\(\left\{ \begin{array}{l} - 12a + 4b - 6c + d = - 49\\ - 2b - 12c + d = - 37\\ - 4a + 2c + d = - 5\\ - 8a - 2b + d = - 17\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\\c = 3\\d = - 3\end{array} \right.\).
Vậy phương trình mặt cầu: x2 + y2 + z2 − 4x + 2y − 6z – 3 = 0.
Câu 5
A. \({\left( {x + \frac{1}{2}} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} + {\left( {z + \frac{1}{2}} \right)^2} = \frac{3}{4}\);
B. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{{\sqrt 3 }}{2}\);
C. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{3}{4}\);
D. \({\left( {x + \frac{1}{2}} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} + {\left( {z + \frac{1}{2}} \right)^2} = \frac{{\sqrt 3 }}{2}\).
Lời giải
Đáp án đúng là: C
A. Phương trình mặt cầu ngoại tiếp tứ diện ABCD có dạng:
B. x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (a2 + b2 + c2 – d > 0).
C. Vì A, B, C, D (S) nên ta có hệ phương trình
\(\left\{ \begin{array}{l} - 2a + d = - 1\\ - 2b + d = - 1\\ - 2c + d = 1\\ - 2a - 2b - 2c + d = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{1}{2}\\c = \frac{1}{2}\\d = 0\end{array} \right.\).
Bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \frac{{\sqrt 3 }}{2}\).
Vậy phương trình mặt cầu: \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{3}{4}\).
Câu 6
A. x2 + y2 + z2 + 5x + 5y − 5z – 6 = 0;
B. \({x^2} + {y^2} + {z^2} + \frac{5}{2}x + \frac{5}{2}y - \frac{5}{2}z - 6 = 0\);
C. x2 + y2 + z2 +5x + 5y − 5z + 6 = 0;
D. \({x^2} + {y^2} + {z^2} + \frac{5}{2}x + \frac{5}{2}y - \frac{5}{2}z + 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. x2 + y2 + z2 + 3x + y − z – 6 = 0;
B. (S) có tâm \(I\left( {\frac{{ - 3}}{2}; - \frac{1}{2};\frac{1}{2}} \right)\);
C. (S) có tâm \(I\left( {\frac{3}{2};\frac{1}{2}; - \frac{1}{2}} \right)\);
D. (S) có bán kính \(R = \frac{{\sqrt {35} }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. x2 + y2 + z2 + 2x + 4y + 6z = 0;
B. x2 + y2 + z2 − 2x − 4y − 6z = 0;
C. x2 + y2 + z2 − x − 2y − 3z = 0;
D. x2 + y2 + z2 + x + 2y + 3z = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. x2 + y2 + z2 + x + y + z – 2 = 0;
B. x2 + y2 + z2 − x − y – z + 2 = 0;
C. x2 + y2 + z2 − x − y – z − 2 = 0;
D. x2 + y2 + z2 + x + y + z − 6 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. (x + 2)2 + (y + 1)2 + z2 = 4;
B. (S) có tâm là I(2;1; 0);
C. (S) có tâm là I(−2; −1; 0);
D. (x − 2)2 + (y − 1)2 + z2 = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.