4 bài tập Tìm khoảng đơn điệu và cực trị của hàm số được cho bởi công thức (có lời giải)
42 người thi tuần này 4.6 99 lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hàm số xác định trên (1; +∞).
Ta có \[g'(x) = - \frac{1}{{{{\left( {x - 1} \right)}^2}}} < 0\] với mọi x ∈ (1; +∞).
Vậy g (x) nghịch biến trên khoảng (1; +∞).
Lời giải
Tập xác định: D = R. Ta có f '(x) = 6x2 – 18x – 24; f '(x) = 0 ⇔ x = −1 hoặc x = 4.
Bảng biến thiên:

Vậy hàm số đồng biến trên khoảng (− ∞; -1) và (4; +∞), hàm số nghịch biến trên khoảng (-1; 4)
Lời giải
Tập xác định: D = R. Ta có f '(x) = 6x2 – 18x – 24; f '(x) = 0 ⇔ x = −1 hoặc x = 4.
Bảng biến thiên:

Lời giải
Tập xác định: D = R.
Ta có f '(x) = 3x2 – 6x + 3; f '(x) = 0 ⇔ x = 1.
Bảng biến thiên:

Vậy hàm số không có cực trị.