4 bài tập Tiệm cận ngang (có lời giải)
50 người thi tuần này 4.6 50 lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Tiệm cận ngang: \(y = 1\) vì \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{1}{x}}}{1} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 1}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 + \frac{1}{x}}}{1} = 1\).
b) Ta có \(MN = |f(x) - 1| = \left| {\frac{{x + 1}}{x} - 1} \right| = \left| {\frac{1}{x}} \right|\). Và \(\mathop {\lim }\limits_{x \to + \infty } \left| {\frac{1}{x}} \right| = 0;\mathop {\lim }\limits_{x \to - \infty } \left| {\frac{1}{x}} \right| = 0.\)
Nhận xét MN tiến dần về 0 khi khi \(x \to + \infty \) hoặc \(x \to - \infty \).
Lời giải
TXĐ: \[D = \mathbb{R}\backslash \left\{ { - 1} \right\}\]
Ta có: \[\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 + \frac{1}{x}}}{{1 + \frac{1}{x}}} = - 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2 + \frac{1}{x}}}{{1 + \frac{1}{x}}} = - 2\]
Vậy đường thẳng \[y = - 2\] là TCN của đồ thị hàm số đã cho.
Lời giải
a)\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4};{\rm{ }}\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}.\)
Vậy \(y = \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số.
b) \(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1;{\rm{ }}\mathop {\lim }\limits_{x \to - \infty } g(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1.\)
Vậy \({\rm{y}} = 1\) là tiệm cận ngang của đồ thị hàm số.
Lời giải
a) Dựa vào đồ thị ta có:
\({\rm{x}} = 1;{\rm{x}} = 2\) là hai tiệm cận đứng của đồ thị hàm số.
\({\rm{y}} = 0\) là tiệm cận ngang của đồ thị hàm số.
b) Dựa vào đồ thị ta có:
\({\rm{x}} = 0\) là tiệm cận đứng của đồ thị hàm số.
\({\rm{y}} = {\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số.
c) Dựa vào đồ thị ta có: \({\rm{y}} = 1\) là tiệm cận ngang của đồ thị hàm số.