4 bài tập Tiệm cận ngang (có lời giải)
39 người thi tuần này 4.6 39 lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Tiệm cận ngang: \(y = 1\) vì \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{1}{x}}}{1} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 1}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 + \frac{1}{x}}}{1} = 1\).
b) Ta có \(MN = |f(x) - 1| = \left| {\frac{{x + 1}}{x} - 1} \right| = \left| {\frac{1}{x}} \right|\). Và \(\mathop {\lim }\limits_{x \to + \infty } \left| {\frac{1}{x}} \right| = 0;\mathop {\lim }\limits_{x \to - \infty } \left| {\frac{1}{x}} \right| = 0.\)
Nhận xét MN tiến dần về 0 khi khi \(x \to + \infty \) hoặc \(x \to - \infty \).
Lời giải
TXĐ: \[D = \mathbb{R}\backslash \left\{ { - 1} \right\}\]
Ta có: \[\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 + \frac{1}{x}}}{{1 + \frac{1}{x}}} = - 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2 + \frac{1}{x}}}{{1 + \frac{1}{x}}} = - 2\]
Vậy đường thẳng \[y = - 2\] là TCN của đồ thị hàm số đã cho.
Lời giải
a)\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4};{\rm{ }}\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}.\)
Vậy \(y = \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số.
b) \(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1;{\rm{ }}\mathop {\lim }\limits_{x \to - \infty } g(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1.\)
Vậy \({\rm{y}} = 1\) là tiệm cận ngang của đồ thị hàm số.
Lời giải
a) Dựa vào đồ thị ta có:
\({\rm{x}} = 1;{\rm{x}} = 2\) là hai tiệm cận đứng của đồ thị hàm số.
\({\rm{y}} = 0\) là tiệm cận ngang của đồ thị hàm số.
b) Dựa vào đồ thị ta có:
\({\rm{x}} = 0\) là tiệm cận đứng của đồ thị hàm số.
\({\rm{y}} = {\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số.
c) Dựa vào đồ thị ta có: \({\rm{y}} = 1\) là tiệm cận ngang của đồ thị hàm số.