3 bài tập Khảo sát và vẽ đồ thị hàm số bậc hai y = ax^3 + bx^2 + cx + d, (a ≠ 0) (có lời giải)
34 người thi tuần này 4.6 34 lượt thi 3 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải


Khi x = 0 thì y = 2 nên (0; 2) là giao điểm của đồ thị với trục Oy.
Ta có y = 0 ⇔ x3 − 3x2 + 2 = 0
⇔ x = 1 hoặc x = \[1 - \sqrt 3 \] hoặc x = \[1 + \sqrt 3 \]
Vậy đồ thị của hàm số giao với trục Ox tại ba điểm (1; 0), (\[1 - \sqrt 3 \]; 0),
(\[1 + \sqrt 3 \]; 0).
Điểm (0; 2) là điểm cực đại và điểm (2; −2) là điểm cực tiểu của đồ thị hàm số.
Đồ thị của hàm số đã cho được biểu diễn trên Hình 1. Đồ thị của hàm số có tâm đối xứng là điểm I(1; 0).Lời giải
1. Tập xác định: D = \[\mathbb{R}\].
2. Sự biến thiên:
Chiều biến thiên:
Đạo hàm \[y' = - 3{x^2} - 3x - \frac{3}{2}\] . Do y' < 0 trên \[\mathbb{R}\] nên hàm số NB trên khoảng (−∞; +∞).
Hàm số đã cho không có cực trị.
Các giới hạn tại vô cực: \[\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\mathop {\lim }\limits_{x \to + \infty } y = - \infty \]
- Bảng biến thiên

3. Đồ thị:

Đồ thị của hàm số đi qua gốc toạ độ O(0; 0) và điểm (−1; 1).
Đồ thị của hàm số có tâm đối xứng là điểm \[I\left( { - \frac{1}{2};\frac{1}{2}} \right)\]Lời giải
a) Xét hàm số \({\rm{y}} = {{\rm{x}}^3} - 3{{\rm{x}}^2} + 2\). Tập xác định của hàm số là \({\rm{D}} = {\rm{R}}\).
Ta có \({{\rm{y}}^\prime } = 3{{\rm{x}}^2} - 6{\rm{x}};{{\rm{y}}^{\prime \prime }} = 6{\rm{x}} - 6\); \({{\rm{y}}^{\prime \prime }} = 0 \Leftrightarrow {\rm{x}} = 1.{\rm{ }}\)
Với \({\rm{x}} = 1\), ta có \({\rm{y}}(1) = 0\).
Vậy \({\rm{I}}(1;0)\).
b) Ta có \({{\rm{y}}^\prime } = 0 \Leftrightarrow 3{{\rm{x}}^2} - 6{\rm{x}} = 0 \Leftrightarrow {\rm{x}} = 0\) hoă̆c \({\rm{x}} = 2\).
Bảng biến thiên:

Do đó, hàm số đạt cực đại tại \({\rm{x}} = 0\), giá trị cực đại là \({{\rm{y}}_{{\rm{CD}}}} = 2\); hàm số đạt cực tiếu tại \({\rm{x}} = 2\), giá trị cực tiếu là \({{\rm{y}}_{{\rm{CT}}}} = - 2\).
Hai điềm cực trị của đồ thị hàm số là \((0;2)\) và \((2; - 2)\).
Ta thấy \(\left\{ {\begin{array}{*{20}{l}}{\frac{{0 + 2}}{2} = 1}\\{\frac{{2 + ( - 2)}}{2} = 0}\end{array}} \right.\).
Vâ̂y điếm \({\rm{I}}(1;0)\) là trung điếm của đoạn thắng nối hai điếm cực trị của đồ thị hàm số.