Quảng cáo
Trả lời:

1. Tập xác định: D = \[\mathbb{R}\].
2. Sự biến thiên:
Chiều biến thiên:
Đạo hàm \[y' = - 3{x^2} - 3x - \frac{3}{2}\] . Do y' < 0 trên \[\mathbb{R}\] nên hàm số NB trên khoảng (−∞; +∞).
Hàm số đã cho không có cực trị.
Các giới hạn tại vô cực: \[\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\mathop {\lim }\limits_{x \to + \infty } y = - \infty \]
- Bảng biến thiên

3. Đồ thị:

Đồ thị của hàm số đi qua gốc toạ độ O(0; 0) và điểm (−1; 1).
Đồ thị của hàm số có tâm đối xứng là điểm \[I\left( { - \frac{1}{2};\frac{1}{2}} \right)\]Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải


Khi x = 0 thì y = 2 nên (0; 2) là giao điểm của đồ thị với trục Oy.
Ta có y = 0 ⇔ x3 − 3x2 + 2 = 0
⇔ x = 1 hoặc x = \[1 - \sqrt 3 \] hoặc x = \[1 + \sqrt 3 \]
Vậy đồ thị của hàm số giao với trục Ox tại ba điểm (1; 0), (\[1 - \sqrt 3 \]; 0),
(\[1 + \sqrt 3 \]; 0).
Điểm (0; 2) là điểm cực đại và điểm (2; −2) là điểm cực tiểu của đồ thị hàm số.
Đồ thị của hàm số đã cho được biểu diễn trên Hình 1. Đồ thị của hàm số có tâm đối xứng là điểm I(1; 0).Lời giải
a) Xét hàm số \({\rm{y}} = {{\rm{x}}^3} - 3{{\rm{x}}^2} + 2\). Tập xác định của hàm số là \({\rm{D}} = {\rm{R}}\).
Ta có \({{\rm{y}}^\prime } = 3{{\rm{x}}^2} - 6{\rm{x}};{{\rm{y}}^{\prime \prime }} = 6{\rm{x}} - 6\); \({{\rm{y}}^{\prime \prime }} = 0 \Leftrightarrow {\rm{x}} = 1.{\rm{ }}\)
Với \({\rm{x}} = 1\), ta có \({\rm{y}}(1) = 0\).
Vậy \({\rm{I}}(1;0)\).
b) Ta có \({{\rm{y}}^\prime } = 0 \Leftrightarrow 3{{\rm{x}}^2} - 6{\rm{x}} = 0 \Leftrightarrow {\rm{x}} = 0\) hoă̆c \({\rm{x}} = 2\).
Bảng biến thiên:

Do đó, hàm số đạt cực đại tại \({\rm{x}} = 0\), giá trị cực đại là \({{\rm{y}}_{{\rm{CD}}}} = 2\); hàm số đạt cực tiếu tại \({\rm{x}} = 2\), giá trị cực tiếu là \({{\rm{y}}_{{\rm{CT}}}} = - 2\).
Hai điềm cực trị của đồ thị hàm số là \((0;2)\) và \((2; - 2)\).
Ta thấy \(\left\{ {\begin{array}{*{20}{l}}{\frac{{0 + 2}}{2} = 1}\\{\frac{{2 + ( - 2)}}{2} = 0}\end{array}} \right.\).
Vâ̂y điếm \({\rm{I}}(1;0)\) là trung điếm của đoạn thắng nối hai điếm cực trị của đồ thị hàm số.