Cho hình thang cong \[\left( H \right)\] giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = \ln 4\]. Đường thẳng \[x = k\] \[\left( {0 < k < \ln 4} \right)\] chia \[\left( H \right)\] thành hai phần có diện tích là \[{S_1}\] và \[{S_2}\] như hình vẽ bên. Tìm \[k\] để \[{S_1} = 2{S_2}\].
Trả lời: ………………..
Cho hình thang cong \[\left( H \right)\] giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = \ln 4\]. Đường thẳng \[x = k\] \[\left( {0 < k < \ln 4} \right)\] chia \[\left( H \right)\] thành hai phần có diện tích là \[{S_1}\] và \[{S_2}\] như hình vẽ bên. Tìm \[k\] để \[{S_1} = 2{S_2}\].

Trả lời: ………………..
Quảng cáo
Trả lời:

\[k = \ln 3\]
Diện tích hình thang cong \[\left( H \right)\] giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = \ln 4\] là
\[S = \int\limits_0^{\ln 4} {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^{\ln 4} = \]\[{{\rm{e}}^{\ln 4}} - {{\rm{e}}^0} = 4 - 1 = 3\](đvdt).
Ta có \[S = {S_1} + {S_2} = {S_1} + \frac{1}{2}{S_1} = \frac{3}{2}{S_1}\]. Suy ra \[{S_1} = \frac{{2S}}{3} = \frac{{2.3}}{3} = 2\] (đvdt).
Vì \[{S_1}\] là phần diện tích được giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = k\] nên
\[2 = {S_1} = \int\limits_0^k {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^k = \]\[{{\rm{e}}^k} - {{\rm{e}}^0} = {{\rm{e}}^k} - 1\].
Do đó \[{{\rm{e}}^k} = 3 \Leftrightarrow k = \ln 3\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích của mặt cắt là: \(S(x) = \pi {(10 + \sqrt x )^2}\).
Dung tích của chậu là:
\(V = \int_0^{16} S (x)dx = \pi \int_0^{16} {{{(10 + \sqrt x )}^2}} dx = \pi \int_0^{16} {(100 + 20\sqrt x + x)} dx = \left. {\pi \left( {100x + \frac{{40}}{3}{x^{\frac{3}{2}}} + \frac{{{x^2}}}{2}} \right)} \right|_0^{16} = \frac{{7744}}{3}\pi \)
Lời giải
Cửa có hình dạng một parabol \((P)\) với phương trình \(y = a{x^2} + bx + c\).
Parabol \((P)\) có đỉnh \(I\left( {0;\frac{9}{4}} \right)\) nên \(c = \frac{9}{4}\), suy ra \((P):y = a{x^2} + bx + \frac{9}{4}\).
Vì parabol \((P)\) đi qua các điểm \(A\left( { - \frac{3}{2},0} \right),B\left( {\frac{3}{2};0} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{9}{4}a - \frac{3}{2}b = - \frac{9}{4}}\\{\frac{9}{4}a + \frac{3}{2}b = - \frac{9}{4}}\end{array}} \right.\), suy ra \(\left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = 0}\end{array}} \right.\)
Do đó \((P):y = - {x^2} + \frac{9}{4}\).
Gọi \(S\left( {\;{{\rm{m}}^2}} \right)\) là diện tích kính cẩn lắp. Ta có \(S\) bằng diện tích hình phẳng \((H)\) giới hạn bởi parabol, trục hoành và các đường thẳng \(x = - \frac{3}{2},x = \frac{3}{2}\).
\(S = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right)} {\rm{d}}x = \left. {\left( { - \frac{{{x^3}}}{3} + \frac{9}{4}x} \right)} \right|_{ - \frac{3}{2}}^{\frac{3}{2}} = \frac{9}{2}\left( {{m^2}} \right)\)
Vậy diện tích kính cản lắp là \(\frac{9}{2}{m^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.