Câu hỏi:

30/07/2025 15 Lưu

Cắt một vật thể  bởi hai mặt phẳng vuông góc với trục \[Ox\] tại \(x = 1\,;\,x = 3\). Khi cắt một vật thể bởi mặt phẳng vuông góc với trục \[Ox\] tại điểm có hoành độ \(x\) (\(1 \le x \le 3\)), mặt cắt là tam giác vuông có một góc \({45^0}\) và độ dài một cạnh góc vuông là \(\sqrt {4 - \frac{1}{2}{x^2}} \). Tính thể tích vật thể trên.

Trả lời: ………………..

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\frac{{11}}{6}\)

Diện tích tam giác vuông cân là: \(S(x) = \frac{1}{2}\sqrt {4 - \frac{1}{2}{x^2}} .\sqrt {4 - \frac{1}{2}{x^2}}  = \frac{1}{2}\left( {4 - \frac{1}{2}{x^2}} \right)\)

\( \Rightarrow \) Thể tích vật thể là: \(V = \int\limits_1^3 {\frac{1}{2}\left( {4 - \frac{1}{2}{x^2}} \right)dx = \frac{{11}}{6}} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cửa có hình dạng một parabol \((P)\) với phương trình \(y = a{x^2} + bx + c\).

Parabol \((P)\) có đỉnh \(I\left( {0;\frac{9}{4}} \right)\) nên \(c = \frac{9}{4}\), suy ra \((P):y = a{x^2} + bx + \frac{9}{4}\).

Vì parabol \((P)\) đi qua các điểm \(A\left( { - \frac{3}{2},0} \right),B\left( {\frac{3}{2};0} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{9}{4}a - \frac{3}{2}b =  - \frac{9}{4}}\\{\frac{9}{4}a + \frac{3}{2}b =  - \frac{9}{4}}\end{array}} \right.\), suy ra \(\left\{ {\begin{array}{*{20}{l}}{a =  - 1}\\{b = 0}\end{array}} \right.\)

Do đó \((P):y =  - {x^2} + \frac{9}{4}\).

Gọi \(S\left( {\;{{\rm{m}}^2}} \right)\) là diện tích kính cẩn lắp. Ta có \(S\) bằng diện tích hình phẳng \((H)\) giới hạn bởi parabol, trục hoành và các đường thẳng \(x =  - \frac{3}{2},x = \frac{3}{2}\).

\(S = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right)} {\rm{d}}x = \left. {\left( { - \frac{{{x^3}}}{3} + \frac{9}{4}x} \right)} \right|_{ - \frac{3}{2}}^{\frac{3}{2}} = \frac{9}{2}\left( {{m^2}} \right)\)

Vậy diện tích kính cản lắp là \(\frac{9}{2}{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP